• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Overcoming the limitations of optical microscopy

Bioengineer by Bioengineer
December 2, 2016
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Copyright: Benjamin Judkewitz, Charité.

Having played a central role in the advent of modern life sciences, optical microscopy is now virtually indispensable in research. However, as far as the imaging of living organisms is concerned, the technology continues to be limited to a depth of less than one millimeter due to the effect of light scattering. A research group led by Prof. Dr. Benjamin Judkewitz is planning to overcome these limitations and produce images of deeper tissue layers, such as those within the cerebral cortex. The laboratory's endeavors are being funded by the European Research Council (ERC), which has allocated a total of €1.49 million over a period of five years.

When working with living tissues, no conventional microscope is capable of achieving a focus depth of more than a few hundred micrometers. Light scattering, which is responsible for this limitation, is not merely an accidental or chance occurrence, resulting in information being destroyed; rather, light scattering is the result of tissue structure and, as such, is both reproducible and reversible. For a number of years, Prof. Judkewitz's research has focused on utilizing this principle, with the aim of overcoming the limitations of optical microscopy in live tissue imaging. "In order to focus light onto a given point within the body, one would have to ensure that it can enter the tissue from a precise location and at exactly the correct angle, thus ensuring that the beam can reach the target location in spite of scattering," explains the Professor. However, as light penetrates deeper into biological tissues, the degree of scattering increases. This makes it essential to determine the necessary correction pattern, which will make it possible to produce an image or an optical simulation of any chosen point within the light-scattering tissue.

Using a new approach within fluorescence microscopy, the researchers are hoping to turn high-resolution microscopy at greater tissue depths into a reality. "We are using the effects of wavefront modulation and an approach known as 'optical time reversal' to tackle light scattering," explains Prof. Judkewitz. Overcoming the depth limitations of current technologies, would open up a range of possibilities for researchers engaged in the study of biological systems and the development of new diagnostic approaches. "In combination with functional imaging and electrophysiology, these advances may make it possible to study circuits and processes within the brain that have so far been inaccessible to non-invasive optical methods." Through his close work with researchers from several different disciplines, Prof. Judkewitz is addressing the challenge of developing a new generation of imaging technology. In addition to biologists and neuroscientists, his research team includes mathematicians, physicists, and engineers. The team's work is being funded by the European Research Council (ERC), which has allocated a total of €1.49 million over five years.

ERC Starting Grant

The European Research Council provides support for young research scientists as part of 'Horizon 2020', the EU's 8th 'Framework Programme for Research'. Formal completion of the grant agreement means that the working group at Charité will have access to a total of €1.49 million in funding (Grant Agreement n°714560).

###

Contact:
Prof. Dr. Benjamin Judkewitz
NeuroCure Cluster of Excellence
Charité – Universitätsmedizin Berlin
Email: benjamin.judkewitz@charite.de

Links:
Judkewitz Laboratory [AG Judkewitz]
NeuroCure

Media Contact

Dr. Benjamin Judkewitz
benjamin.judkewitz@charite.de

http://www.charite.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.