• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Outwitting climate change with a plant ‘dimmer’?

Bioengineer by Bioengineer
March 16, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Regnault/ TUM

Plants possess molecular mechanisms that prevent them from blooming in winter. Once the cold of win-ter has passed, they are deactivated. However, if it is still too cold in spring, plants adapt their blooming behavior accordingly. Scientists from the Technical University of Munich (TUM) have discovered genetic changes for this adaptive behavior. In light of the temperature changes resulting from climate change, this may come in useful for securing the production of food in the future.

Everyone knows that many plant species bloom at different times in spring. The time at which a plant blooms in spring does not follow the calendar, but is instead determined by environmental factors such as temperature and day length. Biologists have discovered that plants recognize these environmental factors via genetically determined programs and adapt their growth accordingly.

In order to adapt to new climate zones and to ensure the evolutionary success of the species, these genetic programs may be adapted over the course of evolution. These adaptive processes take place passively: Minor changes (mutations) take place in the genetic material (DNA sequence) of the genes involved. If an adaptation proves successful over the following years, a new population establishes itself as a genetically distinct subspecies.

Comparison of Biological Adaptations with Genetic Changes

In order to find out which mutations were used particularly frequently over the course of evolution, scientists compare biological adaptations such as shifts in the point in time at which blooming takes place with existing genetic changes. For many plant species, such as the thale cress (Arabidopsis thaliana), which is often used in research, but also for food crops such as corn, rice, barley and wheat, there are now initiatives currently mapping the genome (entire DNA sequence) of many subspecies and varieties. This makes comparisons at the DNA level particularly simple and efficient.

In the journal eLife, Ulrich Lutz from the Chair of Plant Systems Biology at the TUM and his colleagues from the Helmholtz Zentrum München jointly describe the results of a comparative sequence analysis of the FLM (FLOW-ERING LOCUS M) gene from over a thousand Arabidopsis genome sequences.

FLM binds directly to DNA, allowing it to influence the creation of other genes (transcription), which delays bloom-ing. Via comparisons of the FLM DNA sequence from over a thousand subspecies, Lutz was able to determine which genetic changes occurred frequently as this plant evolved: Generally speaking, these are the changes that provide the plant with an adaptive advantage found in a large number of subspecies. Mutations that did not pro-vide an advantage, on the other hand, were lost over time. The frequency of the changes is therefore an indication that these mutations were the most successful from an evolutionary point of view.

For the FLM gene he characterized, Lutz was able to demonstrate that the genetic changes that occur worldwide have an influence on how frequently and efficiently the FLM gene is read. As FLM is able to delay the point in time at which blooming occurs, a more intensive reading of the gene directly corresponds to later blooming. FLM be-haves much like a light dimmer that the plant uses to regulate gene activity — and hence blooming — on a continuous scale.

FLM Gene Acts Like a Controller

The underlying gene changes influenced this reading of FLM. Modified DNA was found in the area of the gene 'switch' (promoter), which regulates how much of the FLM gene is produced. In addition, the mechanism of gene splicing could also be observed: As part of this process, parts are cut out of the interim gene product. The quantity of active FLM can also be adapted via genetic changes that impact gene splicing. Hence, a direct dependency was found between the point in time of blooming and the quantity of the FLM gene, which in Arabidopsis can be finely adjusted via DNA sequence changes.

"The FLM variants we identified are ideal candidate genes that thale cress can use to adapt the point in time at which blooming takes place to the temperature changes caused by climate change," said Professor Claus Schwechheimer from the Chair of Plant Systems Biology at TUM.

Findings May Help Plants Adapt to Climate Change

Temperature changes of just a few degrees Celsius during the growth phase of crop plants such as canola or sugar beets have a negative impact on agricultural production. In the future, the findings obtained by the team including the TUM scientists may allow the FLM gene to be used as a regulator to help adapt the blooming period to different temperatures as a result of climate change. With this knowledge, the goal of efficient food production over the long term is now within reach.

###

Publication: Ulrich Lutz, Thomas Nussbaumer, Manuel Spannagl, Julia Diener, Klaus F.X. Mayer, Claus Schwechheimer: Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis, eLife 3/2017.

Contact: Technical University of Munich
Chair of Plant Systems Biology
Prof. Dr. Claus Schwechheimer
Tel: +49 (0)8161 71-2880
E-Mail: [email protected]
http://www.sysbiol.wzw.tum.de

Media Contact

Dr. Claus Schwechheimer
[email protected]
49-816-171-2880
@TU_Muenchen

http://www.tum.de

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Turkish Adaptation of Cognitive Flexibility Scale for Autism

October 13, 2025
Efficient Byzantine-Robust Federated Learning with Homomorphic Encryption

Efficient Byzantine-Robust Federated Learning with Homomorphic Encryption

October 13, 2025

Genetic Polymorphism and Tri-Allelic Patterns in Gujarat Brahmins

October 13, 2025

Tailoring AI: Uncertainty Quantification for Personalization

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1228 shares
    Share 490 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Turkish Adaptation of Cognitive Flexibility Scale for Autism

Efficient Byzantine-Robust Federated Learning with Homomorphic Encryption

Genetic Polymorphism and Tri-Allelic Patterns in Gujarat Brahmins

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.