• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

OU study expands understanding of bacterial communities for wastewater treatment system

Bioengineer by Bioengineer
May 13, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Oklahoma

A University of Oklahoma-led interdisciplinary global study expands the understanding of activated sludge microbiomes for next-generation wastewater treatment and reuse systems enhanced by microbiome engineering. Wastewater treatment and reuse are critical to global health and sustaining a world population predicted to reach 10 billion by 2050.

“In May 2014, we established a Global Water Microbiome Consortium as a way to promote international collaboration and communication on global research and education for water microbiome,” said Jizhong Zhou, OU director, Institute for Environmental Genomics; George Lynn Cross Research Professor, OU College of Arts and Sciences; adjunct professor, Gallogly College of Engineering; adjunct senior scientist, Lawrence Berkeley National Laboratory; and adjunct professor, Tsinghua University.

“Different from several other global initiatives using a bottom-up approach to solicit microbial samples, the consortium used top-down sampling strategy to target the microbiomes of activated sludge processes in municipal wastewater treatment plants that represent a vital element of the infrastructure for modern urban societies. The campaign involved 111 investigators who sampled 269 wastewater treatment plants in 86 cities in 23 countries on six continents,” said Zhou.

This study is novel in several ways: (1) it reports the first comprehensive, highly coordinated effort to examine the global diversity and biogeography of the activated sludge microbiome; (2) it documents a highly diverse activated microbiome, containing up to one billion microbial phylotypes comprise of novel species; (3) it identifies the core global taxa of activated sludge microbial communities that are linked to activated sludge performance; (4) it reveals that the activated sludge microbiome is distinct from microbiomes in other habitats; and (5) it provides an understanding of the mechanisms driving the composition and functions of the activated sludge communities.

Each day wastewater is treated by an activated sludge process in municipal wastewater treatment plants and returned to the environment for use. This treatment process has been used for over a century and today represents the largest application of biotechnology in the world, yet there has been no effort to map the global activated sludge microbiome. Developing a fundamental understanding of the biodiversity of the activated sludge microbiome in relationship to performance is critical to advancing and optimizing this key technology for maintaining environmental health.

“This unprecedented global sampling effort yielded new insight into the microbiology of activated sludge,” said Bruce Rittmann, director, Biodesign Swette Center for Environmental Biotechnology, Arizona State University. “Despite giant geographic differences, the microbial communities of activated sludge have a core of about 28 bacterial strains, which reflects the powerful and unique ecological selection of the activated sludge process.”

“This expansive study is the first time that a systematic study of the hugely beneficial microbial communities involved in the biological treatment of daily wastewaters from communities around the world have been studied to understand their fundamental structure and function has been undertaken. It represents an important development in understanding and maintaining these crucial microbial communities,” said Lisa Alvarez-Cohen, Fred and Claire Sauer Professor, University of California Berkeley, and adjunct senior scientist, Lawrence Berkeley National Laboratory.

###

A paper on this research, “Global Diversity and Biogeography of the Bacterial Communities in Wastewater Treatment Plants,” has been published in Nature Microbiology. For more information about this study, please contact [email protected].

Media Contact
Jana Smith
[email protected]

Original Source

https://bit.ly/2LG1gJF

Related Journal Article

http://dx.doi.org/10.1038/s41564-019-0426-5

Tags: BacteriologyBiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Cold-Tolerant Germination in Hulless Barley Uncovered!

Cold-Tolerant Germination in Hulless Barley Uncovered!

October 10, 2025
blank

Tuberculosis Fat Boosts Immune Cells, Aids Bacteria

October 10, 2025

Kinsey Institute Research Reveals Long-Term Effects of Restricted Sex Education on Adult Relationships

October 10, 2025

Host-Directed Adjuvant Boosts Antibiotic Effectiveness Against Bacteria

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1201 shares
    Share 480 Tweet 300
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gene Expression Scores Predict Aging Outcomes

Tackling Inappropriate Prescribing Cascades for Safer Meds

New Inhibitor 4′-O-methylochnaflavone Targets HSP90AB1 in Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.