• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

OU professor receives NSF Early CAREER Award

Bioengineer by Bioengineer
March 9, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Oklahoma

A University of Oklahoma Gallogly College of Engineering professor, Steven P. Crossley, is the recipient of a five-year, National Science Foundation Early CAREER Award in the amount of $548,829 for research that can be used to understand catalysts that are important for a broad range of chemical reactions ranging from the production of renewable fuels and chemicals for natural gas processing. The research will be integrated with educational and outreach programs intended for American Indian students, emphasizing the importance of sustainable energy.

"The NSF CAREER award is partly in recognition of the important work that Steve has already done in the field of catalysis. It is one of the highest honors a young faculty member can receive. We look forward to him doing great things in the future," said Brian P. Grady, director of the OU School of Chemical, Biological and Materials Engineering.

Crossley, an assistant professor in the OU School of Chemical, Biological and Materials Engineering, is also a faculty mentor for the American Indian Science and Engineering Society. The project entitled, "SusChEM:CAREER:Using unique synthesis techniques and reaction kinetics to quantify and manipulate catalytically active sites in metal-reducible oxide systems," will provide a detailed understanding of active sites and atom transfer processes involved in catalytic conversion of bio-oil molecules derived from biomass.

"We are proposing a new method to quantify the role of different catalytically active sites under harsh reaction conditions that are commonly challenging to decouple. Our findings should help to clarify confusion in the literature while providing valuable information necessary for improved catalyst design," said Crossley.

Biomass conversion processes typically create a broad range of oxygenated intermediates that are treated further by catalytic processes to remove excess oxygen and build longer chain hydrocarbons attractive as fuel components and chemical intermediates. The efficient conversion requires multifunctional catalysts–typically composed of metal and metal oxide active sites–capable of several simultaneous or sequential reaction steps. While it is well understood that different types of active sites are required for different reactions, the exact nature of those sites and their ideal proximity is not known.

This study will examine those factors by decoupling metal sites from reducible metal oxide sites using carbon nanotube bridges as hydrogen shuttles. By eliminating direct contact between the metal and metal oxide components, and by varying the metal-metal oxide spacing along the carbon nanotubes, the study will provide an opportunity to examine independently two important aspects of bifunctional catalysis on reducible metal oxides: metal-support interactions and hydrogen spillover effects vary with different types of molecules common to biomass deconstruction processes. For more information on the study, contact Crossley at [email protected].

###

Media Contact

Jana Smith
[email protected]
405-325-1322
@ouresearch

http://www.ou.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

PepMimic: Innovating Peptide Design via Interface Mimicry

October 12, 2025

Origin of Aquaculture Feed Ingredients Key to Sustainability

October 12, 2025

Blockchain-Based Distributed Storage for Motion Data

October 12, 2025

2024 JA Ōmura Awards Celebrate Scientific Excellence

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1218 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PepMimic: Innovating Peptide Design via Interface Mimicry

Origin of Aquaculture Feed Ingredients Key to Sustainability

Blockchain-Based Distributed Storage for Motion Data

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.