• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Otago’s atom interaction discovery valuable for future quantum technologies

Bioengineer by Bioengineer
April 24, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Otago

By breaking with conventionality, University of Otago physicists have opened up new research and technology opportunities involving the basic building block of the world – atoms.

In a study, just published in Nature Communications, researchers put one atom inside each of two laser beams before moving them together until they started to interact with each other.

Co-author Associate Professor Mikkel F. Andersen, of the Department of Physics, says this allows the atoms to exchange properties in a way which could be “very useful” for future quantum technologies.

“Our work represents an important step in our capability to control the atomic world,” he says.

As atoms are like magnets, when the pair start interacting, they start changing each other’s direction, counterbalancing each other.

It is the first time this “pure test of the basic interaction” has been shown in a lab using two single atoms. Previous experiments have been based on multiple atoms, which can result in undesirable outcomes, such as chemical reactions between the atoms.

By showing how to build multi-atom quantum systems from the bottom up, scientists can do things that are not possible using conventional methods.

“Assembling small physical systems atom by atom, in a controlled way, opens up a wealth of research directions and opportunities that are not otherwise possible. It also leads to the atoms displaying different behaviours than if they were one of many in the system,” Dr Andersen says.

This includes a finite-temperature quantum entanglement resource. This is significant because entangled particles remain connected, even over great distances, and actions performed on one affect the other.

Entanglement can be used to enhance technologies as, because the atoms are interconnected, they can co-operate on a set task, rather than operating on its own.

“When we get to the point where we can exploit quantum entanglement, we will have a second quantum technology revolution – like we did with lasers, which made the internet possible.

“This is why making robust entanglement technology is important – and New Zealand is right at the forefront of this research.”

###

Media Contact
Mikkel F. Andersen
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09420-6

Tags: Atomic PhysicsChemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

School Readiness Challenges Linked to Prematurity

Drivers of Increased Treatment for Uncontrolled Hypertension

Nurses’ Attitudes and Missed Care: A Predictive Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.