• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Otago discovery links DNA-packaging proteins and cancer development

Bioengineer by Bioengineer
September 27, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Otago

University of Otago scientists have unravelled the 3D structure of two proteins, potentially providing answers as to why some people may be at risk of developing specific cancers.

In new findings published today in leading journal Nature Communications, the team of researchers led by the Department of Biochemistry's Dr Peter Mace, has solved the structure of two proteins – which in humans are called BAP1 and ASXL1 – that control DNA packaging.

DNA is normally wrapped around proteins and packaged for efficient storage and to control which genes are active. Many proteins help to manage this packaging process and when it is disrupted, cancer can occur.

Dr Mace explains that mutations in these proteins occur in many different cancers including melanomas, mesothelioma, renal cancers and leukaemia.

BAP1 mutations are particularly common in mesothelioma, which is a cancer that is rare in the general population but is induced by asbestos exposure and is very hard to treat.

The new structure helps to understand how the two proteins co-operate to remove DNA-packaging markers in normal cells and how their function is disrupted in tumours.

"Continuing work will help us understand the network of changes that occur during cancer development," Dr Mace says.

This is the first structure of these proteins to be captured, which the researchers achieved by working on fruit fly versions of the proteins that have the same important parts as the human proteins, but are slightly less complicated.

"This is the best model we currently have for how the human proteins work," Dr Mace explains.

"The next step is to fully understand the added complexity of the human proteins."

###

The lead author of the work is Dr Martina Foglizzo a Postdoctoral Fellow in the Mace Lab at the University of Otago with collaborators from the University of Canterbury and the Walter and Eliza Hall Institute of Medical Research, Melbourne.

Access to high-intensity X-rays at the Australian Synchrotron was essential for several aspects of the work and was supported through the New Zealand Synchrotron Group.

A Rutherford Discovery Fellowship and a research grant from the University of Otago supported early stages of the research, which is now funded by the Health Research Council of New Zealand.

For further information, please contact:

Dr Peter Mace
Department of Biochemistry
Tel +64 3 479 7845
Mob + 64 22 394 0704
Email [email protected]

Liane Topham-Kindley
Senior Communications Adviser
Tel +64 3 479 9065
Mob +64 21 279 9065
Email [email protected]

Media Contact

Liane Topham-Kindley
64-212-799-065
@otago

http://www.otago.ac.nz

Original Source

https://www.otago.ac.nz/news/news/otago696784.html http://dx.doi.org/10.1038/s41467-018-06186-1

Share12Tweet7Share2ShareShareShare1

Related Posts

Palmitoylation Unveils COX6A1’s Role in Liver Disease

November 3, 2025

Modest Physical Activity May Slow Alzheimer’s Progression in At-Risk Older Adults

November 3, 2025

OHSU Researchers Uncover Innovative Tools for Early Cancer Detection and Treatment

November 3, 2025

Exploring Tetracycline’s Impact on Kidney Health

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation Unveils COX6A1’s Role in Liver Disease

Modest Physical Activity May Slow Alzheimer’s Progression in At-Risk Older Adults

Decoding Cancer’s Neural Links: NIH-Funded Research Explores Stem Cell Control in Tissue Renewal and Tumor Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.