• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Oscillation assisted 3D printing renders ultrafast fabrication of microlens array

Bioengineer by Bioengineer
October 15, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD & SUSTech


With increasing demand for miniaturization of optoelectronics, microlens array has attracted significant attention and become an important micro-optics device widely used in compact imaging, sensing, optical communication and others. Typically, microlens array consists of multiple micron-sized lenses with optical surface smoothness and superior uniformity, which increases the requirement for machining precision.

Despite the tremendous progress made in manufacturing techniques during the past decades, some limitations, such as high time consumption, high process complexity, lack of fabrication flexibility, and difficulty in consistency control for the existing techniques, still exist.

Recently, researchers from the Singapore University of Technology and Design (SUTD) and Southern University of Science and Technology (SUSTech) in Shenzhen, China proposed an approach which integrated oscillation-assisted digital light processing (DLP) 3D printing with grayscale UV exposure to render an ultrafast and flexible fabrication of microlens arrays with optical surface smoothness.

“3D printing of small geometries with optical surface smoothness is a big challenge.” said the project leader, Associate Prof Qi Ge from SUSTech, “In our approach, the computationally designed grayscale patterns are employed to realize microlens profiles upon one single UV exposure which removes the staircase effect existing in the traditional layer-by-layer 3D printing method, and the projection lens oscillation is applied to further eliminate the jagged surface formed due to the gaps between discrete pixels.”

Detailed morphology characterizations including scanning electron microscopy (SEM) and atomic force microscopy (AFM) prove that the integration of projection lens oscillation considerably smoothens the lens surface and reduces the surface roughness from 200 nm to about 1 nm.

“In addition to surface roughness, lens profile also plays a key role in optical performance.” said Chao Yuan, the co-first author of the paper and a postdoctoral research fellow from SUTD, “In order to better assist the grayscale design for microlens array fabrication, we developed a theoretical model to describe the photopolymerization process and predict the lens profile.”

“The DLP based 3D printing affords remarkable flexibility to the fabrication of microlens arrays. Microlenses with different sizes, geometries and profiles are printable upon one single UV exposure with different grayscale patterns.” said Kavin Kowsari, the other co-first author of the paper and a postdoctoral research fellow from SUTD.

“Relative to the other fabrication method, our oscillation assisted DLP based printing method is energy- and time-efficient without degradation of optical performance, which is convenient for commercialization and deployment into mass production.” said Prof Ge, “Also, this approach provides instructive inspirations for other manufacturing fields with high demands for ultra-smooth surfaces.”

###

This work was funded by SUTD’s Digital Manufacturing and Design (DManD) Centre which is supported by the Singapore National Research Foundation (NRF). The research was published in ACS Applied Materials & Interfaces.

Media Contact
Melissa Koh
[email protected]
65-649-98742

Related Journal Article

http://dx.doi.org/10.1021/acsami.9b14692

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

November 4, 2025
Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Genes Linked to Prostate Cancer Risk

Enhancing Ionic Conductivity in NaAlI4 through Substitution

Taft Armandroff and Brian Schmidt Appointed as Leaders of the Giant Magellan Telescope Board of Directors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.