• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Origins of diabetes may be different in men and women, according to new Concordia research

Bioengineer by Bioengineer
March 23, 2022
in Biology
Reading Time: 3 mins read
0
Kerri Delaney and Sylvia Santosa
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the past four decades, global cases of Type 2 diabetes mellitus have skyrocketed. According to the World Health Organization, the number of people estimated to have the disease jumped from 108 million in 1980 to 422 million in 2014, with the fastest growth observed in low- and middle-income countries.

Kerri Delaney and Sylvia Santosa

Credit: Concordia University

Over the past four decades, global cases of Type 2 diabetes mellitus have skyrocketed. According to the World Health Organization, the number of people estimated to have the disease jumped from 108 million in 1980 to 422 million in 2014, with the fastest growth observed in low- and middle-income countries.

Although the disease is common, there is still much research left to be done to fully understand it. For instance, while diabetes is linked to obesity, researchers still do not know the exact reasons why obesity causes diabetes.

In a new paper published in the journal Obesity Reviews, Concordia researchers Kerri Delaney and Sylvia Santosa look at how fat tissue from different parts of the body may lead to diabetes onset in men and women. They reviewed almost 200 hundred scientific papers looking for a deeper understanding of how fat operates at the surface and tissue level, and the mechanisms by which that tissue contributes to diabetes onset.

“There are many different theories about how diabetes develops, and the one that we explore posits that different regions of fat tissue contributes to disease risk differently,” says Kerri Delaney, a PhD candidate at Concordia’s PERFORM Centre and the paper’s lead author. “So the big question is, how do the different depots uniquely contribute to its development, and is this contribution different in men and women?”

From surface to cell level

Men and women store fat in different places. Diabetes, like many other diseases, is closely associated with abdominal fat. Women tend to store that fat just under the skin. This is known as subcutaneous fat. In men, abdominal fat is stored around the organs. This is visceral fat.

Fat appears to exhibit different features in men and women. They grow differently, are dispersed differently and interact with the inflammatory and immune system differently. For example, in men fat tissue expands because the fat cells grow in size; in women, fat cells multiply and increase in number. This changes with the loss of the protective hormone estrogen that disappears with menopause and may explain why men are more susceptible to diabetes earlier in life than women.

Working from the hypothesis that diabetes risk is driven by expansions of visceral fat in men and of subcutaneous fat in women, the researchers then looked through the papers to see what was happening in the cell-level microenvironments.

Though more research is needed, there were overall differences observed in the immune cell, hormone, and cell signalling level in men and women that seem to support different origins in diabetes between the sexes.

Delaney and Santosa hope that by identifying how diabetes risks are different in men and women, clinical approaches to treatment of the disease can be better defined between the sexes.

“Currently, the treatment of diabetes is similar for men and women,” says Santosa, an associate professor in the department of Health, Kinesiology and Applied Physiology. “If we understood the differences between them better, we could consider these mechanisms in recommending treatments to men and women based on how diabetes medications work.”

Read the cited paper: “Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females.”



Journal

Obesity Reviews

DOI

10.1111/obr.13393

Method of Research

Literature review

Subject of Research

People

Article Title

Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females

Article Publication Date

5-Jan-2022

COI Statement

Nothing to disclose

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Adrenergic Receptors: Evolution in Pacific Oysters Uncovered

October 23, 2025
New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025

Tracing the Ancient Mediterranean Roots of the “London Underground Mosquito”

October 23, 2025

Duck-Billed Dinosaur “Mummies” Reveal Preserved Flesh and Hooves Encased in Thin Clay Layers

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.