• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Origin of rare disease FOP rooted in muscle regeneration dysfunction

Bioengineer by Bioengineer
January 14, 2022
in Biology
Reading Time: 4 mins read
0
Comparison of control and FOP cell
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by extensive bone growth outside of the normal skeleton that pre-empts the body’s normal responses to even minor injuries. It results in what some term a “second skeleton,” which locks up joint movement and could make it hard to breathe. However, new research in mice by a team at the Perelman School of Medicine at the University of Pennsylvania shows that forming extra-skeletal bone might not be the only driver of the disease. Impaired and inefficient muscle tissue regeneration appears to open the door for unwanted bone to form in areas where new muscle should occur after injuries. This discovery opens up the possibility of pursuing new therapies for FOP and was published today in NPJ Regenerative Medicine.

Comparison of control and FOP cell

Credit: Courtesy of Penn Medicine

Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by extensive bone growth outside of the normal skeleton that pre-empts the body’s normal responses to even minor injuries. It results in what some term a “second skeleton,” which locks up joint movement and could make it hard to breathe. However, new research in mice by a team at the Perelman School of Medicine at the University of Pennsylvania shows that forming extra-skeletal bone might not be the only driver of the disease. Impaired and inefficient muscle tissue regeneration appears to open the door for unwanted bone to form in areas where new muscle should occur after injuries. This discovery opens up the possibility of pursuing new therapies for FOP and was published today in NPJ Regenerative Medicine.

“While we have made great strides toward better understanding this disease, this work shows how basic biology can provide great insights into appropriate regenerative medicine therapies,” said the study’s lead author, Foteini Mourkioti, PhD, an assistant professor of Orthopaedic Surgery and Cell and Developmental Biology, as well as the co-director of the Penn Institute for Regenerative Medicine, Musculoskeletal Program. “From the lab, we’re now able to show that there is potential for a whole new realm of therapies for patients with this devastating condition.”

About 15 years ago, researchers at Penn – including this study’s co-author, Eileen Shore, PhD, a professor in Orthopaedic Surgery and Genetics and the co-director of the Center for Research in FOP and Related Disorders – discovered that a mutation in the ACVR1 gene was responsible for FOP. In that study, the team found that the mutation changed cells within muscles and connective tissues, misdirecting cells within the tissue to behave like bone cells, resulting in new and unnecessary extra-skeletal bone within the body.

“However, while investigations of how the FOP mutation alters the regulation of cell fate decisions have been extensively pursued in recent years, little attention has been paid to the effects of the genetic mutation on muscle and its impact on the cells that repair muscle injuries,” Shore said. “We were convinced that pursuing research in this area could provide clues not only for preventing extra bone formation but also for improving muscle function and regeneration, bringing new clarity to FOP as a whole.”

The researchers studied muscle from mice with the same mutation in the ACVR1 gene that people with FOP have. They focused on two specific types of muscle tissue stem cells: fibro-adipogenetic progenitors (FAPs) and muscle stem cells (MuSCs). Typically, muscle injury repair requires a careful balance of these two cell types. Injured tissue responds by an expansion of FAP cells, which are assigned to recruit muscle stem cells that will regenerate the damaged muscle tissue. After about three days, FAPs die off, their job done. At the same time, MuSCs transition toward a more mature, differentiated state, called muscle fiber, essential to organized movement of our muscles.

In the mice with the ACVR1 mutation that Mourkioti, Shore, and their co-authors studied, apoptosis – the process through which FAP cells die as a part of proper muscle regeneration – had slowed significantly, leading to a high presence of FAPs past their usual lifespan. This altered their balance with the MuSCs. The injured tissue also showed a diminished capacity for muscle stem cell maturation and, as a result, muscle fibers were considerably smaller in mice carrying the ACVR1 mutation compared to muscle fibers in mice without the mutation.

“The prolonged persistence of diseased FAPs within the regenerating muscle contributes to the altered muscle environment in FOP, which reduces muscle regeneration and allows the over-abundant FAPs to contribute to the formation of extra-skeletal bone,” Mourkioti said. “This provides a completely new perspective on how excess extra-skeletal bone is formed – and how it could be prevented.”

The current targets for treating FOP focus on slowing extra-skeletal bone growth. This research may provide a pivotal new direction. “We propose that therapeutic interventions should consider promoting the regenerating potential of muscles together with the reduction of ectopic bone formation,” Shore and Mourkioti wrote. “By addressing both stem cell populations and their roles in the origin of FOP, there is the possibility of greatly enhanced therapies.”

This study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01‐AR041916‐15S1, F31-AR069982), the National Institutes of Health (R01‐AR071399, NIH P30-AR069619), and the International Fibrodysplasia Ossificans Progressiva Association (IFOPA).

Other authors in the study include Alexandra Stanley, Elisia Tichy, Jacob Kocan and Douglas Roberts.



Journal

npj Regenerative Medicine

Method of Research

Randomized controlled/clinical trial

Subject of Research

Animals

Article Title

Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva

Article Publication Date

14-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025
blank

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Federal Funding Drives Breakthroughs in Cancer Research, AACR Report Shows

Engineering Topological Chiral Transport in Flat-Band Ultracold Atoms

Treating Anal Lesions Lowers Invasive Cancer Risk in HIV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.