• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Organo-metal compound seen killing cancer cells from inside

Bioengineer by Bioengineer
February 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Warwick

  • Cancer cells seen to be targeted and killed from the inside with metal-based compound discovered by the University of Warwick
  • The compound – Organo-Osmium FY26 – attacks the weakest part of cancer cells.
  • FY26 is 50x more active than metal drugs used in current cancer treatments
  • Unprecedented minute detail of cancer cells seen with nano-imaging at European Synchotron

Researchers have witnessed – for the first time – cancer cells being targeted and destroyed from the inside, by an organo-metal compound discovered by the University of Warwick.

Professor Peter J. Sadler, and his group in the Department of Chemistry, have demonstrated that Organo-Osmium FY26 – which was first discovered at Warwick – kills cancer cells by locating and attacking their weakest part.

This is the first time that an Osmium-based compound – which is fifty times more active than the current cancer drug cisplatin – has been seen to target the disease.

Using the European Synchrotron Radiation Facility (ESRF), researchers analysed the effects of Organo-Osmium FY26 in ovarian cancer cells – detecting emissions of X-ray fluorescent light to track the activity of the compound inside the cells.

Looking at sections of cancer cells under nano-focus, it was possible to see an unprecedented level of minute detail. Organelles like mitochondria, which are the 'powerhouses' of cells and generate their energy, were detectable.

In cancer cells, there are errors and mutations in the DNA of mitochondria, making them very weak and susceptible to attack.

FY26 was found to have positioned itself in the mitochondria – attacking and destroying the vital functions of cancer cells from within, at their weakest point.

Researchers were also able to see natural metals which are produced by the body – such as zinc and calcium – moving around the cells. Calcium in particular is known to affect the function of cells, and it is thought that this naturally-produced metal helps FY26 to achieve an optimal position for attacking cancer.

More than half of all cancer chemotherapy treatments currently use platinum compounds, which were introduced nearly 40 years ago, so there is a need to explore the benefits which other precious metals could bring.

Although this research was conducted on ovarian cancer cells, the ground-breaking results are applicable to a wider range of cancers.

FY26 has been shown to be more selective between normal cells and cancer cells than cisplatin – having a greater effect on cancer cells than on healthy ones.

Professor Sadler comments that this research could lead to new cancer treatments:

"Cancer drugs with new mechanisms of actions which can combat resistance and have fewer side-effects are urgently needed.

"The advanced nano-focussed x-ray beam at ESRF has not only allowed us to locate the site of action of our novel Organo-Osmium FY26 candidate drug in cancer cells at unprecedented resolution, but also study the movement of natural metals such as zinc and calcium in cells. Such studies open up totally new approaches to drug discovery and treatment"

Professor Sadler's group, including research fellows Dr Carlos Sanchez and Dr Isolda Romero Canelon, gained their results with Dr Peter Cloetens and colleagues at the ESRF in Grenoble, France – a powerful synchrotron source which emits extremely powerful X-ray beams.

Dr Peter Cloetens comments on the process:

"These kinds of experiments are normally performed using bigger doses than what would be done in real life or on a coarse scale that does not provide a clear picture of the processes that take place. On the new nano-imaging ID16A beamline, however, by combining a very tight focus and high flux, we could get a real picture of where the drug goes in a single cell using real-life pharmacological doses."

###

The research, 'Synchrotron X-Ray Fluorescence Nanoprobe Reveals Target Sites for Organo-Osmium Complex in Human Ovarian Cancer Cells', is published in Chemistry – A European Journal.

It is funded by grants from Cancer Research UK & Engineering and Physical Sciences Research Council, The Wellcome Trust, and the European Research Council.

Media Contact

Luke Walton
[email protected]
44-078-245-40863
@warwicknewsroom

http://www.warwick.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Patient Insights: MyChart’s Role in IUD Placement

November 1, 2025
blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025

Delayed Cord Clamping Reduces Bronchopulmonary Dysplasia Risk

November 1, 2025

Nicotine Mitigates Early Neurodegeneration Through Autophagic Enhancement

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient Insights: MyChart’s Role in IUD Placement

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

Delayed Cord Clamping Reduces Bronchopulmonary Dysplasia Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.