• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Organizing a cell’s genetic material from the sidelines

Bioengineer by Bioengineer
June 28, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The illustration is courtesy of the authors and appears in the Molecular Cell paper.

Baltimore, MD–A tremendous amount of genetic material must be packed into the nucleus of every cell–a tiny compartment. One of the biggest challenges in biology is to understand how certain regions of this highly packaged DNA can be called upon so that the genes encoded in them can be "turned on" or expressed and used to manufacture RNA and proteins.

New work published in Molecular Cell by a team of biologists from Carnegie, Soonchunhyang University, and Johns Hopkins University have shed light on this process and their findings have implications for certain age-related diseases and organ decay.

The nucleus, where a cell's DNA is housed, is surrounded by two membrane layers. Some of the cell's DNA is packed in the nuclear interior and some at its periphery. Filament-forming proteins called lamins form a meshwork that connects the DNA at the nuclear periphery to this nuclear membrane.

Lamins are evolutionarily conserved and they have several important roles, including maintaining the shape of the nucleus and influencing gene expression by sensing the cell's needs–like a cellular butler. Mutations in lamins or changes in the amounts of lamin proteins present in a cell are linked to defects in animal development, including human diseases such as premature aging, certain neuropathies, heart defects, and age-associated organ decay.

Since lamins interact with the DNA found at the nuclear periphery, many scientists believed that if the lamin meshwork were removed, it would only affect the folding and packaging of the DNA that exists close to the nuclear membrane.

But this research team, led by Carnegie's Yixian Zheng, showed that when cells are lacking in lamins, changes in how the DNA on the nuclear periphery is packaged alter the structural positions of DNA segments in the nuclear interior.

"It was initially thought that lamins would only influence expression of genes encoded by DNA packaged at the nuclear periphery, but reports, including our own, have shown that cells without lamins, or with lamin-related mutations, have alterations in their expression of genes found throughout the DNA in the nucleus," Zheng explained.

Through in-depth analyses of DNA interactions occurring in the nuclei of cells that lack lamins, the team demonstrated that lamins maintain the relative positions of DNA segments throughout the nucleus. When the positions of genes are altered due to lamin-related mutations or lamin depletion, the genes are not "turned on" or "turned off" correctly. This explains why proteins from the nuclear sidelines can influence the expression of genes throughout the nucleus.

"Lamins are known to build organs during embryonic development and maintain organ and tissue functions later in life. One of the most-interesting aspects of our findings is that the broad influence we now know lamins have on DNA organization and gene expression can help explain how these crucial lamin functions are achieved," Zheng added.

Going forward, the team wants to determine how lamins sense the needs of the cell to help call on gene expression, because such understanding is critical to understanding lamin-associated aging and diseases.

###

This work was supported by the National Research Foundation of Korea, the Soonchunhyang University Research Fund, National Institute of Health and the Ellison Medical Foundation.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Yixian Zheng
[email protected]
@carnegiescience

https://carnegiescience.edu/

Share12Tweet7Share2ShareShareShare1

Related Posts

Measuring Greenhouse Gas Emissions in Cederberg’s Healthcare

October 26, 2025

Stigma, Support, and Stress in ADHD Parenting

October 26, 2025

Nurses’ Crucial Role in Suicide Prevention: A Review

October 26, 2025

Using Roundness to Predict Bowel Necrosis in Intussusception

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    194 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measuring Greenhouse Gas Emissions in Cederberg’s Healthcare

FBXL5 Targeting: A Solution for Oxaliplatin Resistance

Stigma, Support, and Stress in ADHD Parenting

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.