• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Organic makeup of ancient meteorites sheds light on early solar system

Bioengineer by Bioengineer
August 6, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: K.H. Joy

The origin of organic matter found in meteorites that formed during the birth of the Solar System 4.5 billion years ago may provide key clues to understanding the birth of life here on Earth.

It could also help astronomers investigate the potential habitability of other solar systems. That's according to a new study led by The University of Manchester.

The new research, published in Proceedings of the National Academy of Sciences of the United States of America (PNAS), confirms that organic materials accreted in chondritic asteroids probably formed via basic chemical reactions during the infant stage of our Solar System.

Carbonaceous chondrites are meteorites that originated from chondritic asteroids that are as old as our Solar System. Researchers, led by Dr Romain Tartèse of Manchester's School of Earth and Environmental Sciences, have been analysing the isotopic makeup of oxygen in the organic materials found in these specific meteorites. Isotopes are atoms of the same element that share the same numbers of protons, but have a different numbers of neutrons.

Isotopic analysis provides scientists with the isotopic signature of a compound, which acts as a fingerprint of processes involved in its formation. By doing this, the team has helped pinpoint the origins of the organic materials contained within the meteorites, which are made up of key elements necessary for life, such as carbon, hydrogen, oxygen, nitrogen, and sulphur.

The findings suggest that if organic materials can form by basic chemical processes operating in our Solar System, there is a possibility that they are widespread in other planetary systems.

Carbonaceous chondrites are made of the first solid materials – such as rocks, organics, water ice, and fine grain dust – formed in the Solar System. When found on Earth and analysed in detail, they act as time capsules for understanding how planets formed and evolved over billions of years.

"Chondrites are a snapshot of the early Solar System, providing key insights on how protoplanets and planets formed and were processed," says Dr Tartèse.

Organic-rich carbonaceous chondrites are particularly rare, comprising only a few per cent of all known meteorites.

"Earth is a dynamic planet – processes such as plate tectonics and erosion have erased most of the early Earth records," Dr Tartèse says. This makes comprehensive studies on chondrites all the more important to understand how our planet formed and evolved.

Using samples from the Muséum National d'Histoire Naturelle in Paris, the research team spent two years precisely measuring and interpreting the oxygen isotope composition of organics in some of these early-formed meteorites.

The study provides the first "high-precision triple oxygen isotope analysis" of carbonaceous chondrite organics. Past studies mostly focused on two other building blocks of life abundant in organics – hydrogen and nitrogen. Oxygen has a crucial advantage over other elements, such as hydrogen and nitrogen, as it is fairly abundant in these meteorites, comprising 10-20% of chondrite organics. But most importantly, it is made of three different stable isotopes, while hydrogen and nitrogen only have two stable isotope varieties.

Having three stable isotopes, oxygen offers an extra level of information compared to elements with two stable isotopes such as hydrogen and nitrogen, providing critical clues to further constrain the origin of chondritic organics.

Dr Tartèse added: "The oxygen isotope pattern was similar to the relationship linking the composition of the Sun, asteroids and terrestrial planets. Therefore, this likely implies that carbonaceous chondrite organics were formed through chemical reactions in the early Solar System, rather than having been inherited from the interstellar medium."

###

Media Contact

Jordan Kenny
[email protected]
01-612-758-257
@UoMNews

http://www.manchester.ac.uk

Related Journal Article

http://dx.doi.org/10.1073/pnas.1808101115

Share12Tweet7Share2ShareShareShare1

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR-Engineered T Cells: Challenges and Opportunities

Olefin π-Coordination at Low-Oxidation Boron Centers

Targeting Lipid Metabolism to Enhance Antitumor Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.