• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Oregon scientists drill into white graphene to create artificial atoms

Bioengineer by Bioengineer
April 11, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology

EUGENE, Ore. – April 11, 2019 – By drilling holes into a thin two-dimensional sheet of hexagonal boron nitride with a gallium-focused ion beam, University of Oregon scientists have created artificial atoms that generate single photons.

The artificial atoms – which work in air and at room temperature – may be a big step in efforts to develop all-optical quantum computing, said UO physicist Benjamín J. Alemán, principal investigator of a study published in the journal Nano Letters.

“Our work provides a source of single photons that could act as carriers of quantum information or as qubits. We’ve patterned these sources, creating as many as we want, where we want,” said Alemán, a member of the UO’s Material Science Institute and Center for Optical, Molecular, and Quantum Science. “We’d like to pattern these single photon emitters into circuits or networks on a microchip so they can talk to each other, or to other existing qubits, like solid-state spins or superconducting circuit qubits.”

Artificial atoms were discovered three years ago in flakes of 2D hexagonal boron nitride, a single insulating layer of alternating boron and nitrogen atoms in a lattice that is also known as white graphene. Alemán is among numerous researchers who are using that discovery to produce and use photons as sources of single photons and qubits in quantum photonic circuits.

Traditional approaches for using atoms in quantum research have focused on capturing atoms or ions, and manipulating their spin with lasers so they exhibit quantum superposition, or the ability to be in a simultaneous combination of “off” and “on” states. But such work has required working in vacuum in extremely cold temperatures with sophisticated equipment.

Motivated by the observation that artificial atoms are frequently found near an edge, Alemán’s team, supported by the National Science Foundation, first created edges in the white graphene by drilling circles 500 nanometers wide and four nanometers deep.

The devices were then annealed in oxygen at 850 degrees Celsius (1,562 degrees Fahrenheit) to remove carbon and other residual material and to activate the emitters. Confocal microscopy revealed tiny spots of light coming from the drilled regions. Zooming in, Alemán’s team saw that the individual bright spots were emitting light at the lowest possible level–a single photon at a time.

The individual photons conceivably could be used as tiny, ultra-sensitive thermometers, in quantum key distribution, or to transfer, store and process quantum information, Alemán said.

“The big breakthrough is that we’ve discovered a simple, scalable way to nanofabricate artificial atoms onto a microchip, and that the artificial atoms work in air and at room temperature,” Alemán said. “Our artificial atoms will enable lots of new and powerful technologies. In the future, they could be used for safer, more secure, totally private communications, and much more powerful computers that could design life-saving drugs and help scientists gain a deeper understanding of the universe through quantum computation.”

###

Co-authors on paper were UO doctoral students Joshua Ziegler, Rachel Klaiss, Andrew Blaikie and David Miller, and Viva R. Horowitz, a professor of physics at Hamilton College in New York, who spent summer 2018 in Alemán’s lab as a visiting professor.

The research was done in Alemán’s lab, the UO’s Center for Advanced Materials Characterization in Oregon (CAMCOR) and the Oregon Rapid Materials Prototyping Facility. The latter, located in CAMCOR, was established in 2016 by an award from the M. J. Murdock Charitable Trust.

Source: Benjamin Alemán, assistant professor, Department of Physics and Materials Science Institute, 541-346-3321, bAlemá[email protected]

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Paper: https://pubs.acs.org/doi/abs/10.1021%2Facs.nanolett.9b00357

About Ben Alemán: https://physics.uoregon.edu/profile/bAlemán/

Alemán lab: https://Alemánlab.uoregon.edu/

Department of Physics: https://physics.uoregon.edu

Materials Science Institute: https://materialscience.uoregon.edu/

Center for Advanced Materials Characterization in Oregon: http://camcor.uoregon.edu/

Media Contact
Jim Barlow
[email protected]
http://dx.doi.org/10.1021/acs.nanolett.9b00357

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/Electronics
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing RNA Polymerase II Start Sites via csRNA-seq

Gender Variations in Biomarkers and Memory Decline in Alzheimer’s

Innovative Device Combines Sunlight and Kangaroo Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.