• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 4 mins read
0
ORC2’s Role in Human Gene Expression Reveals Surprising Extent and Impact
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a groundbreaking study published in Cell Reports, researchers have unveiled an unexpectedly expansive role of the Origin Recognition Complex (ORC) in regulating gene expression by modulating epigenetic landscapes and chromosomal architecture in human cells. Traditionally acknowledged for its pivotal function in initiating DNA replication, ORC is now emerging as a multifaceted regulator influencing chromatin dynamics with broad implications for understanding cellular gene regulation mechanisms.

The six-subunit ORC, originally characterized in yeast as an essential factor for marking DNA replication origins, has long been suspected to possess additional functions beyond replication initiation. Previous experiments in simpler eukaryotes hinted at ORC’s involvement in structuring chromatin, the intricate DNA-protein complex fundamental to genome organization. However, the precise ways in which ORC contributes to epigenetic regulation and gene transcription in mammalian systems remained poorly understood until now.

Led by Anindya Dutta, Ph.D., at the University of Alabama at Birmingham, the research team employed sophisticated knockdown strategies targeting individual ORC subunits in human cancer cell lines. These experiments revealed a striking phenomenon wherein individual ORC components bind to distinct DNA sites independently rather than as a uniform hexameric complex. This selective and differential DNA binding challenges the longstanding view that ORC functions exclusively as a six-subunit entity when engaging with chromatin.

.adsslot_e9vqiTjWPy{width:728px !important;height:90px !important;}
@media(max-width:1199px){ .adsslot_e9vqiTjWPy{width:468px !important;height:60px !important;}
}
@media(max-width:767px){ .adsslot_e9vqiTjWPy{width:320px !important;height:50px !important;}
}

ADVERTISEMENT

Delving deeper, the study demonstrated that the binding by distinct ORC subunits directly impacts gene expression profiles. Specifically, ORC2 exhibited a dualistic role: at certain genomic loci, ORC2 binding condensed chromatin structure and recruited repressive histone modifications, thereby silencing gene activity. Contrarily, at other locations, ORC2 facilitated chromatin opening and gene activation, underscoring a nuanced regulatory capacity that varies with genomic context.

An especially intriguing discovery pertains to ORC2’s interaction with CTCF, a major architectural protein often dubbed the “master weaver” of the genome for its critical role in orchestrating DNA loop formation and higher-order chromatin folding. ORC2 binding was found to obstruct CTCF recruitment at specific DNA sites, effectively preventing the establishment of alternative loop anchor points. This exclusion appears to modulate three-dimensional genome topology and influence transcriptional outputs downstream.

In absence of ORC2, however, previously blocked CTCF sites become accessible, leading to the genesis of novel chromatin loops. At select gene loci, this remodeling results in physical separation of enhancers from promoters—key regulatory DNA elements—thereby dampening gene expression and promoting the spread of repressive epigenetic marks. This mechanism highlights an unappreciated interplay between replication initiation components and genome architectural regulators that collectively orchestrate gene expression.

One of the immense challenges confronting this study was the sheer scale of the human genome, which, if stretched linearly, would span over six feet in length within a nucleus barely microns across. Understanding the dynamic folding and unfolding of this vast polynucleotide chain demands refined approaches. By mapping ORC subunit binding sites and correlating them with histone modification patterns and chromatin conformation data, the researchers provided a detailed picture of how ORC shapes epigenetic landscapes at a genome-wide scale.

The study underscored its importance not only by expanding fundamental genomic science but also by raising potential clinical questions. Considering ORC’s involvement in cancer cell lines, the multifaceted regulatory functions of ORC subunits might be relevant to tumor biology and therapeutic strategies targeting chromatin regulators. Insights into ORC-mediated modulation of gene expression could pave the way for novel interventions aimed at correcting epigenetic dysregulation in disease contexts.

The comprehensive investigation was carried out through collaborative efforts spanning institutions, including the University of Alabama at Birmingham, University of Virginia School of Medicine, and Case Western Reserve University. Their integrative methodology combined molecular genetics, chromatin immunoprecipitation sequencing, transcriptomics, and chromosomal conformation capture technologies to unravel these complex regulatory networks.

This pioneering research fundamentally reshapes our understanding of ORC from a replication origin-defining complex to a versatile epigenetic regulator with profound influence over chromatin structure and gene activity. By revealing how individual ORC subunits govern DNA accessibility, repressive versus activating chromatin states, and three-dimensional genome architecture, these findings open new avenues in epigenetics research and genome biology.

Future studies inspired by this work may explore the biochemical mechanisms underlying ORC subunit specificity in chromatin binding, the exact molecular basis for antagonism with CTCF, and the broader physiological and pathological implications of ORC-mediated chromatin regulation in normal and diseased human tissues. Such endeavors promise to deepen our appreciation of the genome’s regulatory complexity and its impact on health and disease.

Subject of Research: Cells

Article Title: Regulation of epigenetics and chromosome structure by human ORC2

News Publication Date: 24-Jun-2025

Web References:
https://dx.doi.org/10.1016/j.celrep.2025.115816

References:
Dutta, A., Su, Z., Zang, C., Tian, M., Wang, Z., Shibata, E., Shibata, Y., Yang, T., Jin, F. (2025). Regulation of epigenetics and chromosome structure by human ORC2. Cell Reports. https://doi.org/10.1016/j.celrep.2025.115816

Image Credits: UAB

Keywords: Functional genomics, Genomic methylation, Transcriptomes, Genome mapping, Genome organization, Genomic analysis, Human genetics

Tags: Anindya Dutta research findingscancer cell line researchcellular gene regulation studieschromatin dynamics in humanschromosomal architecture modulationcomplex interactions in genome organizationDNA replication originsepigenetic regulation mechanismsgene transcription processesORC binding dynamics in human cellsORC role in gene expressionORC subunit functions in mammals

Share12Tweet8Share2ShareShareShare2

Related Posts

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025
UC Riverside Scientist Honored by American Federation for Aging Research

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025

Prodrug Florfenicol Amine Targets Resistant Mycobacterium abscessus

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PFAS Levels Linked in Water and Southern California Adults

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.