• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Oral antiviral drug effective against respiratory syncytial virus (RSV) identified by Biomedical Sciences researchers

Bioengineer by Bioengineer
June 24, 2022
in Health
Reading Time: 3 mins read
0
Dr. Richard K. Plemper
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ATLANTA—An oral antiviral drug that targets a key part of the respiratory syncytial virus (RSV) polymerase and inhibits the synthesis of viral genetic material has been identified, a finding that could provide an effective treatment against RSV disease, according to researchers in the Center for Translational Antiviral Research at Georgia State University.

Dr. Richard K. Plemper

Credit: Georgia State University

ATLANTA—An oral antiviral drug that targets a key part of the respiratory syncytial virus (RSV) polymerase and inhibits the synthesis of viral genetic material has been identified, a finding that could provide an effective treatment against RSV disease, according to researchers in the Center for Translational Antiviral Research at Georgia State University.

The findings, published in the journal Science Advances, identify AVG-388 as the lead drug candidate, which effectively blocks the activity of the viral RNA polymerase, an enzyme responsible for replication of the viral genome. RSV is a leading cause of lower respiratory infections in infants and immunocompromised individuals, but no efficient therapeutic exists. The virus caused an estimated 33.1 million cases worldwide in 2015 that required 3.2 million hospitalizations and resulted in 59,800 deaths. 

Finding effective drugs to fight RSV has been challenging. Through mutations, RSV has escaped advanced candidate classes that prevent the virus from entering a cell. To overcome this issue, recent drug development efforts have focused on the viral RNA-dependent RNA polymerase complex of RSV because of the possible broader window of opportunity to fight the virus during viral genome replication and transcription.

“We have identified the AVG class of inhibitors of RSV RNA synthesis,” said Dr. Richard K. Plemper, senior author of the study, Distinguished University Professor and director of the Center for Translational Antiviral Research in the Institute for Biomedical Sciences at Georgia State. “Through chemical optimization, we have developed the clinical candidate AVG-388, which is orally efficacious against RSV in animal models of infection.” 

In addition, the researchers demonstrated potent antiviral activity in human airway epithelium organoid cultures. 

“In this study, we have mapped an exciting druggable target in the RSV RNA-dependent RNA-polymerase and established the clinical potential of the AVG inhibitor class against RSV disease,” said Dr. Julien Sourimant, first author of the study and a postdoctoral fellow in the Center for Translational Antiviral Research in the Institute for Biomedical Sciences at Georgia State.  

The research team investigated the effect of treatment on viral replication at different oral doses intended to prevent or cure disease. They demonstrated that treatment reduced virus load by several orders of magnitude in the different disease models. 

“Our results lay the foundation for formal development of the AVG class and the structure-guided identification of companion drugs with overlapping target sites but distinct resistance profiles,” Plemper said.

Co-authors of the study include Julien Sourimant (first author), Carolin M. Lieber, Jeong-Joong Yoon, Mart Toots and Richard K. Plemper of the Center for Translational Antiviral Research in the Institute for Biomedical Sciences at Georgia State; Mugunthan Govindarajan, Venkata Udumula and Michael G. Natchus of Emory Institute for Drug Development at Emory University; Kaori Sakamoto of the College of Veterinary Medicine at the University of Georgia; Joseph Patti of Aviragen Therapeutics Inc. (now at JP Biotech Advisors Inc.); and John Vernachio of Aviragen Therapeutics Inc.

The study was funded by the National Institutes of Health. 



Journal

Science Advances

DOI

10.1126/sciadv.abo2236

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase

Article Publication Date

24-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Supporting Caregivers of COPD Patients: Key Insights

October 5, 2025

Evaluating Mid-Upper Arm Circumference for Child Thinness

October 5, 2025

GDI-PMNet Enables Joint Prediction of Glioma Markers

October 5, 2025

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

October 5, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Supporting Caregivers of COPD Patients: Key Insights

Exploring Plastid Genome Traits in Saururaceae

Evaluating Mid-Upper Arm Circumference for Child Thinness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.