• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Optimum shade for cocoa

Bioengineer by Bioengineer
May 18, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wilma Blaser/ETH Zurich

Chocolate consumption is increasing around the world. Yet, cocoa farmers, most of them smallholders, have to cope with ageing plantations, decreasing soil fertility, increasing rates of pests and disease, and the consequences of climate change. As a result, cocoa could become scarce in the foreseeable future.

Stable yields thanks to sustainable farming systems

Researchers in the Sustainable Agroecosystems group at ETH Zurich aim to find solutions for these problems. "Our goal is to develop sustainable farming systems that maintain or ideally even increase agricultural production over the long term, and provide as many ecosystem services possible," explains Johan Six, head of the group. Amongst others, ecosystem services include the maintenance of biodiversity of flora and fauna and the sequestration of carbon from the air into soils and biomass, which should help to mitigate climate change.

Agroforestry systems hold the promise for sustainable cocoa cultivation. Historically, cocoa was grown under the shade of other trees but these systems were gradually replaced by higher yielding monocultures.

Today, attempts are being made to go back to cultivating cocoa beneath the canopy of larger trees. The rationale behind this is that this shade could protect the cocoa from too much sun, regulate temperature and humidity, provide a habitat for animals and plants, and keep harmful organisms in check. Shade trees could also maintain soil fertility and absorb carbon out of the atmosphere.

However, they can also compete with the cocoa plants for light and nutrients and thus reduce yield. Research investigating whether the benefits of shade trees outweigh their costs has rarely been done so far; there are no studies that assess all costs and benefits together in a single study to develop specific recommendations for the optimum degree of shade.

Do shade trees live up to their promise?

"We were interested in whether the shade trees could indeed deliver everything they promise, and how we can optimise cocoa agroforestry systems," explains Wilma Blaser, a postdoctoral fellow in Six's group. In a field study, they therefore compared shaded and unshaded cocoa systems in Ghana, West Africa, the world's second largest cocoa producer. They worked with local researchers to examine and measure the effects of shade trees in smallholders' cocoa fields.

The researchers found that under a shade-tree cover of approximately 30 percent, shade trees had a predominantly positive effect on cocoa plants compared to areas without shade trees. This amount of shade is ideal for keeping pests and diseases in check while maintaining maximum soil moisture.

The cooling effect on temperature, the number of animal and plant species in the field, and the carbon sequestration all increase with an increase in the amount of shade. Up to about 30 percent shade, cocoa yield is not compromised.

More shade, however, reduces the yield, as additional trees compete more intensely with the cocoa plants for light, water and/or nutrients. "The optimal amount of shade is therefore a cost-benefit consideration," Blaser explains. There is one promise that the shade trees seem, however, unable to keep: the amount of nutrients in the soil does not automatically increase with a rise in the number of trees.

Eco-friendlier = more stable

All in all, the inclusion of shade trees in cocoa fields had a predominantly positive effect on ecosystem services, though the researchers emphasise that even the best agroecosystem cannot replace the ecosystem services provided by natural ecosystems when it comes to, say, carbon fixation or biodiversity. As Six says, "Agriculture is never natural; the idea behind agroecology is simply to infuse more ecology into agriculture".

Blaser continues: "More ecology can make farming more sustainable and more stable." For example, a higher diversity of plant species in an agricultural system can potentially keep diseases from spreading and the temperature buffering effects of shade trees could contribute to higher yield stability under extreme weather conditions. "Combined these effects can lead to improved and above all longer-term yield".

Further potential to optimise agroforestry systems

Wilma Blaser is delighted: "Thanks to our research on shade trees, we were able to put forward specific recommendations for the optimum degree of shade in cocoa farming." The research even showed that cocoa crops could tolerate more shade than previously thought, without having a serious negative impact on the harvest. Still, efforts to increase cocoa yields in agroforestry systems require additional measures in cultivation. Blaser clarifies by saying, "Targeted application of fertiliser, timely pest control, regularly pruning, or weeding could potentially increase cocoa yields even under a higher shade canopy."

There is still potential to optimise the choice of the right shade tree in agricultural systems, and Blaser wants to concentrate on shade-tree characteristics in her next project. She found 38 species in the farms she worked in, including orange, mango and avocado trees, all of which have different types of canopy and root systems. For example, some of them could be better soil improvers than others. Blaser aims to investigate which ones make the best shade trees for cocoa plantations.

###

Reference

Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E, Six J. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability, volume 1, pages 234-239 (2018). doi: 10.1038/s41893-018-0062-8

Media Contact

Johan Six
[email protected]
41-446-328-483
@ETH_en

http://www.ethz.ch/index_EN

Original Source

https://www.ethz.ch/en/news-and-events/eth-news/news/2018/05/optimum-shade-for-cocoa.html http://dx.doi.org/10.1038/s41893-018-0062-8

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.