• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Optimizing feeding is necessary to maintain milk production in organic herds

Bioengineer by Bioengineer
June 15, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Philadelphia, PA, June 15, 2017 – Consumer demand for organic milk recently surpassed the available supply, with sales of organic products reaching $35 billion in 2014 and continuing to rise. As farms transition to organic production to meet demand, feeding strategies will need to be adapted to meet USDA National Organic Program requirements. Currently, agriculture accounts for approximately 9% of total US greenhouse gas (GHG) emissions; the US dairy industry has committed to a 25% reduction of GHG by 2020 relative to 2009. By varying diet formulation and the associated crop production to supply the diet, farmers can affect the quantity of GHG emissions of various feeding systems. Therefore, researchers from the University of Wisconsin-Madison created a study to compare the effects of feeding strategies and the associated crop hectares on GHG emissions of Wisconsin certified organic dairy farms.

"Herd feeding strategies and grazing practices influence on-farm GHG emissions not only through crop production, but also by substantially changing the productivity of the herd," lead author Di Liang said. "Managing more land as pasture, and obtaining more of the herd feed requirements from pasture, can increase the GHG emissions if pasture and feed management are not optimized to maintain milk production potential."

The authors identified four feeding strategies that typified those used on farms in Wisconsin, with varying degrees of grazing, land allocated for grazing, and diet supplementation. A 16-year study was used for robust estimates of the yield potential on organically managed crop land in southern Wisconsin as well as nitrous oxide and methane emissions and soil carbon.

Production of organic corn resulted in the greatest nitrous oxide emissions and represented about 8% of total GHG emission; corn also had the highest carbon dioxide emissions per hectare. Emissions decreased as the proportion of soybeans in the diet increased, as soybeans require less nitrogen fertilization than corn grain. More intensive grazing practices led to higher GHG emission per metric tonne. However, allowing cows more time on pasture resulted in lower emissions associated with cropland. Manure management and replacement heifers accounted for 26.3 and 20.1% of GHG emissions.

Based on their findings, the authors determined that a holistic approach to farm production is necessary. Organic dairy farms with well-managed grazing practices and adequate levels of concentrate in diet can both increase farm profitability and reduce GHG emission per kilogram of milk.

"Consumers often equate more dependence on pasture with environmentally friendly farming, but this study demonstrated that low milk production per cow is a major factor associated with high GHG emission. Managing both pasture and supplementation to increase milk production per cow will substantially reduce GHG emissions," said Journal of Dairy Science Editor-in-Chief Matt Lucy.

Factors such as dairy cow breed and nonproduction variables may also have an effect on GHG emissions on organic dairy farms. Thus, future studies are needed in this area to elucidate the effects of grazing management and feeding systems. With more research, however, crop and milk production, GHG emissions, and farm profitability can be optimized on organic dairy farms.

###

Media Contact

Eileen Leahy
[email protected]
732-238-3628
@elseviernews

http://www.elsevier.com

http://dx.doi.org/10.3168/jds.2016-11909

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Spanish Roma’s Genetic Diversity and Structure

November 8, 2025
Single-Cell Insights into Bat Viral Infections Uncovered

Single-Cell Insights into Bat Viral Infections Uncovered

November 8, 2025

Alkanna Extract-Driven Synthesis of Ag-ZnO Nanoparticles

November 8, 2025

Whole Genome Sequencing Reveals Tuberculosis Resistance in Huzhou

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Resolving Healthcare Conflicts: Core Operations vs. Administration

Optimizing Deep Gob-Side Entry: Mechanical Insights

Coronary Artery Calcium: A Potential Indicator of Overall Mortality Beyond Heart Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.