• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Opening a new door to immunity

Bioengineer by Bioengineer
May 11, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Justin Kelley/MU Health

A new study could have major implications for our understanding of disease processes for conditions such as autoimmunity, atherosclerosis and heart failure, potentially leading to better prevention and treatment.

Dr. Edward T.H. Yeh, chairman of the Department of Medicine and director of the Center for Precision Medicine at the University of Missouri School of Medicine, has been leading a team of researchers at MU and in Shanghai, China, in examining innate immunity, a critical arm of the immune system responsible for fending off external threats from infections.

"What we were trying to figure out is how the immune response is regulated," Yeh said.

The innate immune response can be activated by a family of proteins called Toll-like receptors (TLRs). TLR signaling is responsible for maintaining immune homeostasis, which is the process of keeping the immune system stable. TLR signaling must be balanced just so – both hyperactivation and hypoactivation cause disease in humans.

What Yeh and his team found is that a key signaling protein known as TRAF6 is kept in check by an inhibitory protein called sNASP to prevent accidental firing of the innate immune response. Animal studies supported this discovery – mice with a mutation that caused sNASP proteins to bind to TRAF6 proteins all the time were more susceptible to septic infection.

"The innate immune response is a critical component of immunity. Our finding identifies a novel way that immune response can be controlled, which can be translated to many human diseases, such as atherosclerosis, autoimmunity and heart failure," Yeh said.

Experiments are in progress to study how sNASP mutations would affect the development of atherosclerosis and heart failure.

###

Dr. Yeh holds the endowed Frances T. McAndrew Chair at the University of Missouri and his laboratory is supported by grants from the National Institute of Health and by MU's strategic hire program.

The study appears in the Journal of Clinical Investigation, published by the American Society for Clinical Investigation.

Media Contact

Caroline Dohack
[email protected]
573-882-4173
@mizzounews

http://www.missouri.edu

Original Source

https://medicine.missouri.edu/news/mu-school-medicine-researcher-uncovers-clue-how-disease-processes-develop

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.