• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

One synthetic molecule, two doorways into cell

Bioengineer by Bioengineer
March 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kyoto University iCeMS

Shuhei Furukawa from Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) and colleagues in Japan synthesised polyhedral-shaped porous molecules that rotate in a double layer of lipids, exposing different-shaped openings. These openings allowed the molecule to conduct ions from one side of the artificial lipid membrane to the other in two distinct ways. Chemists had previously synthesised molecules that conduct ions across a lipid membrane, but incorporating two different openings into a single molecule remained elusive.

Ion channels are porous proteins present in the membranes of all living cells. They are responsible for managing the transportation of ions across the cell membrane, creating electrical signals that initiate various cellular processes. Most ion channels have a single opening, but a unique family of channels have two. Researchers would like to have a clearer understanding of how these two-pored channels work and whether they might be implicated in some diseases. Designing synthetic channels is one way to go about this.

Furukawa and his team synthesised a molecule made of the chemical element rhodium. The molecule is shaped like a cuboctahedron, with eight triangular and six square faces. The rhodium-based molecule was embedded into a double layer of lipids. The team then synthesized short and long alkoxy chains made of hydrogen, carbon and oxygen molecules, which attached the molecule to the surrounding lipids.

They found that the rhodium-based molecule rotated inside the lipid bilayer, exposing at any one time a smaller triangular- or a larger square-shaped channel. Each shape led to a different state of electrical conductance. The molecule was also found to rotate more slowly when it was attached to the longer alkoxy chains, increasing the amount of time the channel remained open before the molecule continued its rotation.

"Rotational dynamics is the key to switching between distinct conductance states to expose either the triangular or square apertures to the aqueous phase," write the researchers in their study published in the journal Chem.

The team also found that changing the metal they used from rhodium to copper changed the molecule's permeability: while the rhodium-based molecule is permeable to ions with two positive charges, like calcium, the copper-based molecule only transports ions with a single positive charge, like potassium.

Further studies are underway to improve the molecule's design so the pores are open more often and the molecules can be switched from one state to the other using external stimuli.

###

The paper "Metal-organic cuboctahedra for synthetic ion channels with multiple conductance states" appeared on March 9, 2017 in Chem, with doi: 10.1016/j.chempr.2017.02.002

The Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of cell and material sciences, both traditionally strong fields at the university, in a uniquely innovative global research environment. ICeMS combines the biosciences, chemistry, materials science and physics to create materials for mesoscopic cell control and cell-inspired materials. Such developments hold promise for significant advances in medicine, pharmaceutical studies, the environment and industry. http://www.icems.kyoto-u.ac.jp

Media Contact

Izumi Mindy Takamiya
[email protected]
81-757-539-755
@KyotoU_News

http://www.kyoto-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Transforming Color Fundus Photos into Fluorescein Angiography

December 17, 2025

Two Decades of Spinal Cord Injury Care Insights

December 17, 2025

MAT2A Drives Macrophage Changes, Weakening Plaques

December 17, 2025

Exploring Uveitis: Proteomics of Eye Fluids

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Color Fundus Photos into Fluorescein Angiography

Two Decades of Spinal Cord Injury Care Insights

MAT2A Drives Macrophage Changes, Weakening Plaques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.