• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

One-step protein purification achieves high yields, purity and activity

Bioengineer by Bioengineer
July 5, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UAB

BIRMINGHAM, Ala. – A novel method to improve the high-yield, high-purity, high-activity purification of complex proteins by 10- to 500-fold has been developed at the University of Alabama at Birmingham.

"This new method offers a number of crucial advantages to both researchers and the pharmaceutical industry," said Dmitry Vassylyev, professor of biochemistry and molecular genetics at UAB. "It is potentially the most efficient and universal tool for high-throughput studies of many significant biological systems and may aid large-scale production of therapeutic proteins."

High-yield, high-purity, high-activity purification, or HHH, is the Holy Grail for structural and industrial applications. The UAB single-step purification scheme overcomes significant weaknesses of current commercially available purification systems, Vassylyev says.

In a paper published in Proceedings of the National Academy of Sciences, Vassylyev and UAB colleagues tested their CL7/Im7 affinity chromatography purification method on five traditionally challenging biological molecules, including prokaryotic and eukaryotic membrane proteins and multisubunit DNA/RNA-binding proteins.

"A notable illustration of the superior performance of the CL7/Im7 approach," they wrote in the PNAS report, "is that the CNX protein sample, which we purified in a few hours and from only a few grams of E. coli cells, would have a market value of about $400,000, according to current commercial prices."

The system is simple and reusable — the UAB researchers have restored and reused their affinity chromatography column more than 100 times, maintaining nearly 100 percent binding capacity.

The method is based on the remarkably strong binding affinity between bacterial toxins called colicins and their specific immunity proteins. A host bacteria can release a colicin toxin — such as Colicin E7 DNAse — that is able kill other bacteria. Inside the host bacteria, the CE7 is bound with Immunity Protein 7, or Im7; this binding prevents self-inflicted destruction.

The binding affinity of CE7/Im7 is nearly as strong as a covalent bond, and it is four to seven orders of magnitude higher than other affinity chromatography analogs. Vassylyev and colleagues made an inactive variant of CE7, called CL7, which has no DNase activity but retains full binding affinity for Im7. They also made a variant of Im7 that allows efficient coupling to agarose beads.

Using genetic techniques, the CL7 tag is easily inserted into genes of target proteins, in both eukaryotes and prokaryotes. These genes may be moved to an expression vector, or the tagged target protein can be expressed from native cells without amplification.

When a crude protein lysate is poured through a column filled with the Im7-agarose beads, the CL7 tags on the target protein bind to the Im7. An engineered protease site is used to release the target protein from the bound CL7 tag. This allows one-step HHH purification, with 97 to 100 percent purity, for the target proteins tested by the UAB researchers.

In contrast, most published purification schemes for these challenging proteins are multistep, multiday protocols, with lower yields. Vassylyev, a protein crystallographer, says getting large amounts of pure protein is the rate-limiting step in crystallography, prompting him to begin a search for a better method four years ago.

The challenging proteins purified in the PNAS report were bacterial Thermus thermophilus RNA polymerase and Mycobacteria tuberculosis RNA polymerase, which are multisubunit proteins; YidC membrane integrase, a Bacillus halodurans membrane protein; calnexin, or CNX, a human transmembrane chaperone protein; and two nucleic acid binding proteins, the multisubunit condensin protein complex of Salmonella typhimurium that folds and compacts cellular DNA, and the human remodeling and spacing factor complex, RSF, which is implicated in mediating nucleosome assembly.

The simple purification system is also applicable to pulldown experiments and kinetic activity or binding assays, such as surface plasmon resonance. It also may assist cryo-electron microscopy.

###

Vassylyev and Louise Chow, Ph.D., are corresponding authors of the paper, "Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins." Co-authors are Marina N. Vassylyeva, Sergiy Klyuyev, Alexey D. Vassylyev, Hunter Wesson, Zhuo Zhang, Matthew B. Renfrow, Hengbin Wang and N. Patrick Higgins, all of the UAB Department of Biochemistry and Molecular Genetics.

Chow, a professor of biochemistry and molecular genetics at UAB, is the Anderson Family Chair in Medical Education, Research and Patient Care in the School of Medicine.

Media Contact

Jeff Hansen
[email protected]
205-209-2355

http://www.uab.edu

Original Source

http://www.uab.edu/news/innovation/item/8458 http://dx.doi.org/10.1073/pnas.1704872114

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

September 16, 2025
New Study Reveals the Science Behind Exercise and Weight Loss

New Study Reveals the Science Behind Exercise and Weight Loss

September 16, 2025

Revolutionary AI Accelerates Development of Lifesaving Therapies

September 16, 2025

Boston University Secures Major Multimillion-Dollar NIH Grant to Advance Women’s Health Research

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

U of I Researchers Uncover Origins of Genetic Code Linked to Primitive Protein Structures

New Study Finds Problem Gambling Quadruples Suicide Risk in Youth After Four Years

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.