• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

One-dimensional crystals for low-temperature thermoelectric cooling

Bioengineer by Bioengineer
May 24, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yoshihiko Okamoto

Nagoya, Japan- Thermoelectric cooling is a solid-state refrigeration process where the heat in an electrically conductive material is transferred using the material's own conduction electrons without any need for the gaseous coolants, such as chlorofluorocarbons, that are used in conventional refrigeration. Coolers based on thermoelectric technology can be scaled down in size without changing their thermal-to-electrical energy conversion efficiency and this is a major advantage for localized cooling of tiny electronic devices. This effect is already used for temperature control in devices such as infrared sensors and laser diodes, and has also been used to provide low-temperature refrigeration for cryogenic electronic devices like superconducting sensors.

However, the lack of materials with suitable thermoelectric efficiency for practical cooling applications at temperatures below 250 K (approximately -23°C) has driven researchers at Nagoya University to look at the effectiveness of new compounds for truly low-temperature applications.

"We studied the thermoelectric properties of whisker-like crystals composed of a compound of tantalum, silicon and tellurium," says corresponding author Yoshihiko Okamoto from Nagoya University's Department of Applied Physics. "These crystals produced very high thermoelectric powers over a wide temperature range, from the cryogenic level of 50 K (which is around -223°C) up to room temperature, but still maintained the low electrical resistivity that is needed for practical cooling applications." The samples that were grown for the experiments included pure Ta4SiTe4 and other crystals that were chemically doped with low levels of molybdenum and antimony.

Various material properties were measured for the samples, including thermoelectric power, electrical resistivity, and thermal conductivity, to compare the effects of the two dopants on their thermoelectric characteristics. "We measured a very high thermoelectric power factor at an optimum temperature of 130 K," adds Okamoto. "However, this optimum temperature could be controlled over a very broad range by varying the chemical doping, and indicates that these crystals are suitable for practical low-temperature use."

Addition of as little as 0.1% molybdenum doping caused the resistivity of the telluride-type crystals to decrease dramatically at low temperatures, while they also demonstrated high thermoelectric powers that were closely related to the strongly one-dimensional electronic structures of the materials. The power factors of the crystals at room temperature greatly exceeded the corresponding values of the conventional Bi2Te3-based alloys that are commonly used in thermoelectric applications, and these crystals thus represent a highly promising route towards the development of high-performance thermoelectric cooling solutions at very low temperatures.

The article, "Large thermoelectric power factor at low temperatures in one-dimensional telluride Ta4SiTe4," was published in Applied Physics Letters at DOI: 10.1063/1.4982623.

###

Media Contact

Koomi Sung
[email protected]
@NU__Research

http://www.nagoya-u.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Evidence Use in Australian Clinical Networks Explained

September 30, 2025
Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

September 30, 2025

Analyzing Asparaginase Pancreatitis in Pediatric Leukemia Rechallenge

September 30, 2025

Experts Caution Federal Budget Reductions Could Stall Progress in Tobacco Control Efforts

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evidence Use in Australian Clinical Networks Explained

Natural Antimicrobial Compounds in Pollen May Shield Bee Colonies from Infections

Analyzing Asparaginase Pancreatitis in Pediatric Leukemia Rechallenge

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.