• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

On the way to lifelike robots

Bioengineer by Bioengineer
November 11, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PAI: Physical Artificial Intelligence

IMAGE

Credit: Image: Robert Stürmer / Empa

Artificial intelligence is supposed to make machines perform at ever more amazing levels. A robot that can do little more than a remote-controlled model car has a limited range of applications. But from an automatic machine to an autonomous robot, it is a big, almost revolutionary step. Robotics researchers Mirko Kovac and Aslan Miriyev, who both work at Empa’s “Materials and Technology Center of Robotics” in Dübendorf and at the “Aerial Robotics Lab” of Imperial College London, are convinced that one decisive component can make this evolutionary step possible: Physical artificial intelligence, PAI for short. Only when the artificial intelligence of a digital “brain” is merged with an intelligent body could new types of robots be created that have properties comparable to those of intelligent living organisms. They have now published their concept in the latest issue of the renowned scientific journal Nature Machine Intelligence.

Thinking outside the box

In order to develop fully autonomous, intelligent robot systems, researchers must recognize and utilize the synergies of different disciplines, such as materials science, biology, mechanical engineering, chemistry and computer science, according to the Empa scientists. “We imagine that PAI robots will only become reality through the use of a variety of unconventional materials and by combining research methods from various disciplines,” says Mirko Kovac. To do this, researchers would need a much broader range of skills than is usually seen in conventional robotics. Interdisciplinary cooperation, partnerships and an adaptation of the curriculum for young researchers are therefore called for. “Working in a multidisciplinary environment requires courage and constant learning. Researchers must leave their comfort zones and think beyond the boundaries of their own field”.

Symbiosis of man and machine

The Empa researchers want to promote the vision of a society in which people are “living” together seamlessly with machines. “This symbiosis can only be achieved if safe interaction is possible and if the machines have true, Physical AI, allowing them to live like benevolent animals together with nature and people,” says Kovac. The researchers now hope that their work will encourage active discussion of the topic.

###

Media Contact
Prof. Dr. Mirko Kovac
[email protected]

Original Source

https://www.empa.ch/web/s604/lifelike-robots

Related Journal Article

http://dx.doi.org/10.1038/s42256-020-00258-y

Tags: Computer ScienceHardwareMechanical EngineeringRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025

Predictive Models Shape Transplant Eligibility Decisions

August 29, 2025

Enhanced Visualization of Microcystic Macular Edema in OCT

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

Predictive Models Shape Transplant Eligibility Decisions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.