• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

On the origin of massive stars

Bioengineer by Bioengineer
March 18, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ESA/Hubble, NASA, I. Stephens


This scene of stellar creation, captured by the NASA/ESA Hubble Space Telescope, sits near the outskirts of the famous Tarantula Nebula. This cloud of gas and dust, as well as the many young and massive stars surrounding it, is the perfect laboratory to study the origin of massive stars.

The bright pink cloud and the young stars surrounding it in this image taken with the NASA/ESA Hubble Space Telescope have the uninspiring name LHA 120-N 150. This region of space is located on the outskirts of the Tarantula Nebula, which is the largest known stellar nursery in the local Universe. The nebula is situated over 160 000 light-years away in the Large Magellanic Cloud, a neighbouring irregular dwarf galaxy that orbits the Milky Way.

The Large Magellanic Cloud has had one or more close encounters in the past, possibly with the Small Magellanic Cloud. These interactions have caused an episode of energetic star formation in our tiny neighbour — part of which is visible as the Tarantula Nebula.

Also known as 30 Doradus or NGC 2070, the Tarantula Nebula owes its name to the arrangement of bright patches that somewhat resemble the legs of a tarantula. It measures nearly 1000 light-years across. Its proximity, the favourable inclination of the Large Magellanic Cloud, and the absence of intervening dust make the Tarantula Nebula one of the best laboratories in which to study the formation of stars, in particular massive stars. This nebula has an exceptionally high concentration of massive stars, often referred to as super star clusters.

Astronomers have studied LHA 120-N 150 to learn more about the environment in which massive stars form. Theoretical models of the formation of massive stars suggest that they should form within clusters of stars; but observations indicate that up to ten percent of them also formed in isolation. The giant Tarantula Nebula with its numerous substructures is the perfect laboratory in which to resolve this puzzle as in it massive stars can be found both as members of clusters and in isolation.

With the help of Hubble, astronomers try to find out whether the isolated stars visible in the nebula truly formed alone or just moved away from their stellar siblings. However, such a study is not an easy task; young stars, before they are fully formed — especially massive ones — look very similar to dense clumps of dust.

LHA 120-N 150 contains several dozen of these objects. They are a mix of unclassified sources — some probably young stellar objects and others probably dust clumps. Only detailed analysis and observations will reveal their true nature and that will help to finally solve the unanswered question of the origin of massive stars.

Hubble has observed the Tarantula Nebula and its substructures in the past — always being interested in the formation and evolution of stars.

###

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The scientific results of this observation were previously published in the Astrophyiscal Journal.

Image credit: ESA/Hubble, NASA, I. Stephens

Links

* Images of Hubble – http://www.spacetelescope.org/images/archive/category/spacecraft/

* Images of the Tarantula Nebula – https://www.spacetelescope.org/images/?search=Tarantula+Nebula

Contacts

Bethany Downer

ESA/Hubble, Public Information Officer

Garching, Germany

Email: [email protected]

Media Contact
Bethany Downer
[email protected]

Original Source

https://www.spacetelescope.org/news/heic2004/

Tags: AstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025
Glassy Metal-Organic Frameworks Pave the Way for Fast-Charging Lithium-Ion Batteries

Glassy Metal-Organic Frameworks Pave the Way for Fast-Charging Lithium-Ion Batteries

November 6, 2025

Affordable Coal and Waste Plastics Transformed into High-Value Carbon Fibers

November 6, 2025

UNH Scientists Leverage AI to Uncover New Magnetic Materials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wage Influencers for Swiss Nurses and Physicians Uncovered

Molecular Profiling Reveals Prostate Cancer Stromal Vulnerabilities

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.