• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Omnipath sends strong signal

Bioengineer by Bioengineer
November 29, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combining the power of 27 data resources, Omnipath helps researchers see biological signalling pathways with unprecedented accuracy. Developed by researchers in the UK and Germany and published in Nature Methods, OmniPath offers a comprehensive, unified collection of literature-curated signalling pathways based on an analysis of 41,000 scientific papers.

All the functions happening in our cells are controlled by groups of molecules working together through signalling pathways. Once the first molecule receives a signal, the next one is activated, and so on. When things go wrong in these pathways, cancer can develop. Many cancer drugs work by putting up roadblocks in a pathway, stopping the signal and hopefully the growth of cancerous tissue.

To figure out how signalling pathways work, molecular biologists carry out and validate experiments, sometimes over many years, to characterise the exact interactions taking place between proteins.

Researchers can share the results of these pathway studies in public databases, to build knowledge collectively. The data are put together with the results of thousands of published studies on molecular interactions. These are organised by expert 'curators' so they are discoverable, and can help researchers shape new experiments or analyse new results.

There are now over 27 public databases on signalling interactions, each of which offers something different and many of which offer custom formats. OmniPath, developed by researchers at EMBL-EBI, RWTH Aachen University and the Earlham Institute, gives a unified view of all the 'literature-curated' signalling interactions in these databases.

At its launch, OmniPath has references to more than 41,000 original studies, with data representing 36,557 interactions between 7,984 proteins. The interactome, which describes all the biological interactions in an organism, could include anywhere from 100,000 to 250,000 interactions in a human. That is a huge amount of information to piece together, so accuracy and consistency are paramount.

"The work of data curators is invaluable because without them the data would never come together with the kind of precision you need in biology," says Dénes Türei, EIPOD postdoctoral fellow at EMBL-EBI. "It has been exciting to work together with people from so many disciplines, and produce this concise view into the collective, current knowledge of signalling pathways."

"Researchers tend to trust the accuracy of curated resources, without looking too deeply into their actual content and methods," says Tamás Korcsmáros, Fellow of the Earlham Institute and Institute of Food Research. "Benchmarking studies have mainly focused on resources with interactions from high-throughput experiments, and even these have been few and far between."

The new study provides comprehensive guidelines, based on an extensive examination of more than 50 data resources, to help researchers select the most appropriate data resource for their work.

The data in OmniPath are primarily based on small-scale experiments, but its Pypath software makes it possible to add datasets obtained from large screening experiments or converted from reactions. Pypath (a Python module) lets users build custom signalling networks and combine them with other data. It is a powerful tool for incorporating pathways into bioinformatics workflows and makes the analysis behind OmniPath fully open source, transparent and easily reproducible.

"We compared all manner of signalling data resources and clarified the properties of different datasets, which helps researchers make better-informed decisions in their analyses," says Julio Saez-Rodriguez, visiting group leader at EMBL-EBI and professor at RWTH Aachen. "It has already proved very valuable for the research within our groups, and we hope others will find it valuable as well."

###

Notes to Editors

1) Tamás Korcsmáros, Fellow at the Earlham Institute and the Institute of Food Research is available for interview.

For press queries at Earlham Institute, please contact:
Hayley London
Marcomms Officer, Earlham Institute (EI)
+44 (0)1603 450107
[email protected]

2) Accompanying figures from paper can be accessed, here: https://www.dropbox.com/sh/x49pobthlxp5mi7/AAAEmAcGWomY5lg6VAqT_PC4a?dl=0

3) Paper: Turei D, Korcsmaros T and Saez-Rodriguez J (2016) Omnipath: guidelines and gateway for literature-curated signaling pathway resources. Nature Methods13(12); published online 29 November 2016. DOI: 10.1038/nmeth.4077

OmniPath web service: http://omnipathdb.org/
Pypath code: http://github.com/saezlab/pypath

4) About Earlham Institute (EI)

The Earlham Institute (EI) is a world-leading research institute focusing on the development of genomics and computational biology. EI is based within the Norwich Research Park and is one of eight institutes that receive strategic funding from Biotechnology and Biological Science Research Council (BBSRC) – £6.45M in 2015/2016 – as well as support from other research funders. EI operates a National Capability to promote the application of genomics and bioinformatics to advance bioscience research and innovation.

EI offers a state of the art DNA sequencing facility, unique by its operation of multiple complementary technologies for data generation. The Institute is a UK hub for innovative bioinformatics through research, analysis and interpretation of multiple, complex data sets. It hosts one of the largest computing hardware facilities dedicated to life science research in Europe. It is also actively involved in developing novel platforms to provide access to computational tools and processing capacity for multiple academic and industrial users and promoting applications of computational Bioscience. Additionally, the Institute offers a training programme through courses and workshops, and an outreach programme targeting key stakeholders, and wider public audiences through dialogue and science communication activities.http://www.earlham.ac.uk / @EarlhamInst

Media Contact

Hayley London
[email protected]
01-603-450-107

http://www.earlham.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

HIV Patients on Antiretrovirals: Metabolic Syndrome in Tanzania

August 27, 2025
blank

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Quantum Capacitance of Transition Metal Alloys Analyzed

August 27, 2025

Microlearning Boosts Fertility Knowledge in Iranian Nurses

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIV Patients on Antiretrovirals: Metabolic Syndrome in Tanzania

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

Quantum Capacitance of Transition Metal Alloys Analyzed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.