• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Old drugs, new tricks: Medications approved for other uses also have antibiotic action

Bioengineer.org by Bioengineer.org
January 31, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

IMAGE: University of Illinois chemists found that a number of drugs approved to treat various conditions also have antibiotic properties. Pictured, from left: research scientist Lici A. Schurig-Briccio, graduate students Noman…

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — A number of drugs already approved to treat parasitic infections, cancers, infertility and other conditions also show promise as antibiotic agents against staph and tuberculosis infections, according to a new study by University of Illinois chemists and collaborators. Because these agents act against multiple targets within the bacteria, it may be harder for bacteria to develop resistance.

The new study, led by Illinois chemistry professor Eric Oldfield, was published in the Proceedings of the National Academy of Sciences.

"There is obviously a huge need for new antibiotics," said Oldfield. "We now have bacteria that are totally drug resistant. Bugs are clever: They can adapt and find ways around the things we develop to kill them. So if we attack them at multiple targets, it's harder for them to make one little change to get around it."

The researchers were interested in finding compounds that sabotage the bacteria's energy production line, shutting down cellular processes within the bacterium. These agents, called uncouplers, are already used to treat parasitic infections. Inspired by clofazimine, a leprosy drug that is now being used to treat tuberculosis, the researchers searched among drugs that are either already available or in development to find uncouplers based on their chemical structures.

"What we found is that a lot of FDA-approved molecules that are in use actually do kill bacteria and also act as uncouplers. We were kind of surprised to find that," Oldfield said. "What's even better is that some of those molecules also inhibit enzymes specific to bacteria, or disrupt the membrane or the cell wall."

Such multitarget drugs could have broader applications against an assortment of infections.

For example, one of the most promising uncouplers the study found was vacquinol, a compound being developed to treat glioblastoma, a form of brain cancer. They found that vacquinol inhibits a key enzyme involved in virulence in tuberculosis bacteria, in addition to its uncoupling properties.

The researchers then searched for other compounds with similar structures to vacquinol and found compounds that were potent antibiotics against tuberculosis and Staphylococcus aureus.

"It's a new approach to antibiotics, targeting enzymes together with bacterial energy production," Oldfield said.

Next, Oldfield hopes to develop compounds that are metabolized into uncouplers inside the bacterial cell, further reducing cross-reactivity with human cells and making it more difficult for bacteria to develop resistance. For example, certain heartburn drugs are metabolized within the cell into a compound that acts against tuberculosis.

"The whole idea is that it's possible that some of these compounds that are FDA-approved will work. You can screen a million chemicals to find a new compound but in general you have no idea about its toxicology, or you can start with something that's known," Oldfield said. "Once you start making derivatives, you'll have to prove they're safe, but there's a greater chance to get something that's safe and effective by starting with an approved drug than if you just go into the chemistry lab and screen unknown compounds."

###

The National Institutes of Health supported this work.

Editor's notes: To reach Eric Oldfield, call 217-333-3374; email [email protected]

The paper "Antiinfectives targeting enzymes and the proton motive force" is available online.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Debunking Myths: Animal Encounters with Big Cats, Crocs

September 6, 2025

Mecp2 Mutation Elevates Anxiety in Zebrafish, No Social Change

September 6, 2025

Mitochondrial Genomes of Prototheca: Insights and Comparisons

September 6, 2025

The Impact of Mendelian Randomization on Ischemic Stroke

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Debunking Myths: Animal Encounters with Big Cats, Crocs

Mecp2 Mutation Elevates Anxiety in Zebrafish, No Social Change

Mitochondrial Genomes of Prototheca: Insights and Comparisons

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.