• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Oil and gas wastewater spills alter microbes in West Virginia waters

Bioengineer by Bioengineer
February 23, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: US Environmental Protection Agency

Wastewater from oil and gas operations — including fracking for shale gas — at a West Virginia site altered microbes downstream, according to a Rutgers-led study.

The study, published recently in Science of the Total Environment, showed that wastewater releases, including briny water that contained petroleum and other pollutants, altered the diversity, numbers and functions of microbes. The shifts in the microbial community indicated changes in their respiration and nutrient cycling, along with signs of stress.

The study also documented changes in antibiotic resistance in downstream sediments, but did not uncover hot spots, or areas with high levels of resistance. The findings point to the need to understand the impacts on microbial ecosystems from accidental releases or improper treatment of fracking-related wastewater. Moreover, microbial changes in sediments may have implications for the treatment and beneficial reuse of wastewater, the researchers say.

"My hope is that the study could be used to start making hypotheses about the impacts of wastewater," said Nicole Fahrenfeld, lead author of the study and assistant professor in Rutgers' Department of Civil and Environmental Engineering. Much remains unknown about the impacts of wastewater from fracking, she added.

"I do think we're at the beginning of seeing what the impacts could be," said Fahrenfeld, who works in the School of Engineering. "I want to learn about the real risks and focus our efforts on what matters in the environment."

Underground reservoirs of oil and natural gas contain water that is naturally occurring or injected to boost production, according to the U.S. Geological Survey (USGS), whose scientists contributed to the study. During fracking, a fracturing fluid and a solid material are injected into an underground reservoir under very high pressure, creating fractures to increase the porosity and permeability of rocks.

Liquid pumped to the surface is usually a mixture of the injected fluids with briny water from the reservoir. It can contain dissolved salt, petroleum and other organic compounds, suspended solids, trace elements, bacteria, naturally occurring radioactive materials and anything injected into wells, the USGS says. Such water is recycled, treated and discharged; spread on roads, evaporated or infiltrated; or injected into deep wells.

Fracking for natural gas and oil and its wastewater has increased dramatically in recent years. And that could overwhelm local infrastructure and strain many parts of the post-fracking water cycle, including the storage, treatment, reuse, transportation or disposal of the wastewater, according to the USGS.

For the Rutgers-USGS study, water and sediment samples were collected from tributaries of Wolf Creek in West Virginia in June 2014, including an unnamed tributary that runs through an underground injection control facility.

The facility includes a disposal well, which injects wastewater to 2,600 feet below the surface, brine storage tanks, an access road and two lined ponds (now-closed) that were used to temporarily store wastewater to allow particles to settle before injection.

Water samples were shipped to Rutgers, where they were analyzed. Sediment samples were analyzed at the Waksman Genomics Core Facility at Rutgers. The study generated a rich dataset from metagenomic sequencing, which pinpoints the genes in entire microbial communities, Fahrenfeld noted.

"The results showed shifts in the microbial community and antibiotic resistance, but this site doesn't appear to be a new hot spot for antibiotic resistance," she said. The use of biocides in some fracturing fluids raised the question of whether this type of wastewater could serve as an environment that is favorable for increasing antimicrobial resistance. Antimicrobial resistance detected in these sediments did not rise to the levels found in municipal wastewater – an important environmental source of antimicrobial resistance along with agricultural sites.

Antibiotics and similar drugs have been used so widely and for so long that the microbes the antibiotics are designed to kill have adapted to them, making the drugs less effective, according to the U.S. Centers for Disease Control and Prevention. At least 2 million people become infected with antibiotic-resistant bacteria each year in the U.S., with at least 23,000 of them dying from the infections.

"We have this really nice dataset with all the genes and all the microbes that were at the site," Fahrenfeld said. "We hope to apply some of these techniques to other environmental systems."

###

Study authors include Rutgers undergraduate Hannah Delos Reyes and Rutgers doctoral candidate Alessia Eramo. Other authors include Denise M. Akob, Adam C. Mumford and Isabelle M. Cozzarelli of the U.S. Geological Survey's National Research Program. Mumford earned a doctorate in microbiology at Rutgers.

Media Contact

Todd B. Bates
[email protected]
848-932-0550
@RutgersU

http://www.rutgers.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.