• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ocean-migrating trout adapt to freshwater environment in 120 years

Bioengineer by Bioengineer
May 31, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: John McMillan

Steelhead trout, a member of the salmon family that live and grow in the Pacific Ocean, genetically adapted to the freshwater environment of Lake Michigan in less than 120 years.

Steelhead were intentionally introduced into Lake Michigan in the late 1800s in order to bolster recreational and commercial fisheries. In their native range, which extends from California to Russia, steelhead hatch in freshwater rivers, migrate to the ocean, and return to freshwater to spawn. This migration allows steelhead to feed in the ocean, where they can grow larger and produce more eggs than if they remained in freshwater streams for their entire lives.

The steelhead introduced into Lake Michigan continue to spawn in small freshwater tributaries and streams, but now treat the entirely freshwater habitat of the Great Lakes as a surrogate ocean. After their introduction into Lake Michigan, steelhead began to naturally reproduce and established self-sustaining populations throughout the Great Lakes. To examine how these fish adapted to this novel environment, a team led by Mark Christie, an assistant professor of biological sciences at Purdue University, sequenced the complete genomes of 264 fish. The team then compared steelhead from Lake Michigan to those from their ancestral range, searching for outlier regions associated with genetic adaptation.

The research, which was published in in the journal Molecular Ecology, found that regions of three chromosomes in steelhead evolved after they were introduced in Lake Michigan, offering insight into how this ocean-migrating fish adapted to an entirely freshwater environment.

Two of the three regions on chromosomes that experienced genetic changes are critical to the process that maintains salt and ion balance across membranes in the body, known as osmoregulation. Freshwater fish actively take in ions from their environments to compensate for salts lost via passive diffusion, while saltwater fish expel ions to compensate for the uptake of salts into their bodies. These changes to regions of chromosomes that affect how this process works help explain how steelhead have survived in an entirely freshwater environment.

The third region that changed is involved in metabolism and wound-healing. This adaptation might have allowed steelhead to take advantage of alternative prey or allocate additional resources to activity in their new environment, according to the study.

Alternatively, this region might have adapted as a response to a novel threat: parasitic sea lamprey. These parasitic creatures were unintentionally introduced to Lake Michigan in the 1930s. They latch onto fish like leeches and leave large wounds, often killing large numbers of the fish they prey on.

"If you think about having an open wound in saltwater versus freshwater, the effects are more severe in freshwater because cells can rupture at a faster rate. It makes sense that steelhead might want to counteract those effects more quickly or do it in different ways," said Janna Willoughby, a postdoctoral researcher at Purdue and coauthor on the study. "Furthermore, parasitic lamprey occur in really high densities in the Great Lakes but rarely interact with steelhead in their native range – meaning that they may simply be a strong selective force."

The study also found that genetic diversity was much lower in steelhead in the new environment than fish from their native range. This reduced genetic diversity, sometimes called a founder effect, is common when a new colony is started by only a few members of the original population.

"Even if you have a reduced population due to an introduction event or founder effect, populations still adapt to changing environmental conditions," said Christie. "Figuring out which populations can adapt and why remains a pressing question, particularly in the face of climate change and other conservation issues."

###

Researchers from Oregon State University and Michigan State University collaborated with researchers from Purdue University on this study. Funding was provided by Purdue.

Media Contact

Kayla Zacharias
[email protected]
765-494-9318
@PurdueUnivNews

http://www.purdue.edu/

Original Source

https://www.purdue.edu/newsroom/releases/2018/Q2/ocean-migrating-trout-adapt-to-freshwater-environment-in-120-years.html http://dx.doi.org/10.1111/mec.14726

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Visual Experience’s Impact on Haptic Spatial Perception

October 20, 2025
blank

Unveiling Sex-Switching in Silver Pomfret Juveniles

October 20, 2025

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025

Early Gonadectomy Impacts Lifelong Frailty in Dogs

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-Surgery Immunotherapy Shows Promise in Halting Spread of Aggressive Skin Cancer

Post-Surgery Immunotherapy Shows Promise in Treating Rare, Aggressive Skin Cancer

Assessing Sepsis Management Knowledge Among ICU Nurses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.