• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Observation of antichiral edge states in a circuit lattice

Bioengineer by Bioengineer
May 4, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Originally formulated in the context of condensed matter physics, the Haldane model is an influential model of a two-dimensional topological insulator. It has also been realized in classical-wave metamaterial analogues of topological insulator, such as photonic crystals, acoustic crystals, and electric LC circuits.

Recently, theorists have shown that a modification to the Haldane model exhibits the novel phenomenon of antichiral edge sates, according to E. Colomés and M. Franz, scholars at Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia. Unlike the chiral edge states associated with the standard Haldane model, antichiral edge states possess the same propagation direction on opposite edges of a sample; the current carried by the edge states is compensated by counter-propagating bulk states. However, the modified Haldane model has thus far never been realized in any experimental setting. In condensed matter, it is extremely challenging to achieve since it requires an unusual configuration of magnetic vector potentials within each crystalline unit cell.

An article coauthored by Profs. ZhiHong Hang and Yidong Chong, from Soochow University and Nanyang Technological University respectively, provided the first experimental realization of a modified Haldane model, consisting of electrical circuit lattices. This study entitled “Observation of antichiral edge states in a circuit lattice”, was published in SCIENCE CHINA Physics, Mechanics & Astronomy. These researchers provide direct experimental evidence that the circuit lattice exhibits edge states, and that their propagation is antichiral. Their experimental results are in good agreement not only with theory, but also with numerical circuit simulations. “It opens the door to further experimental explorations of the properties of antichiral edge states in a real physical system”, these researchers stated.

“This work demonstrates the flexibility of electrical circuit lattices as an experimental platform for realizing lattice models with effective magnetic vector potentials”, they explained. Previous researchers had shown how to use circuits to implement a very well-studied topological phase (the Chern insulator, i.e. the simplest two-dimensional topological insulator), whereas in their study they implemented a very novel and nontrivial model (the modified Haldane model).

This experiments also point to the intriguing possibility of using circuit lattices to explore models with Möbius strip geometries and other exotic configurations, which may be a rich avenue of future research.

###

See the article:

Y. Yang, D. Zhu, Z. H. Hang, and Y. D. Chong, Observation of antichiral edge states in a circuit lattice, Sci. China-Phys. Mech. Astron. 64(5), 257011 (2021).

https://doi.org/10.1007/s11433-021-1675-0

https://www.sciengine.com/publisher/scp/journal/SCPMA/64/5/10.1007/s11433-021-1675-0?slug=fulltext

Media Contact
Yanbei
[email protected]

Original Source

http://www.sciengine.com/publisher/scp/journal/SCPMA/64/5/10.1007/s11433-021-1675-0?slug=fulltext

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Physicists Narrow the Search for Elusive Dark Matter

September 29, 2025

Lab Breakthrough in Mimicking Star Formation Wins Prestigious John Dawson Award

September 29, 2025

Scientists Achieve Chiral State Switching in Complex Many-Body Systems

September 29, 2025

Breakthrough Computer Models Unlock Secrets of the Early Universe

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    58 shares
    Share 23 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex-Specific Drug Targets Revealed in Lung Cancer

Surgical Alert: Bowel Dilatation in Elderly Patients

Standardizing AI-Driven Multi-Modal Battery Analysis Techniques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.