• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NYU researchers identify promising target to protect bone in patients with diabetes

Bioengineer by Bioengineer
July 7, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at New York University College of Dentistry (NYU Dentistry) have described a new target that may open the door to developing therapies for preventing bone fractures in people with type 2 diabetes.

In a study published in Nature Communications, the investigators report that hyperglycemic mice (or mice with type 2 diabetes) have a 24-fold higher accumulation of succinate, an intermediate metabolite, in the metabolic pathways of their bone marrow stromal cells. In comparison, succinate was barely detectable in the normal mice. An intermediate metabolite is a compound that is both a product of one-step in a biochemical pathway or cycle, as well as the substrate for the next step.

In the study, "Succinate and its G-protein-coupled receptor stimulate osteoclastogenesis," the researchers took samples of bone marrow from hyperglycemic male mice and healthy mice. They studied the bone metabolism at the cellular level using advanced imaging and computational techniques, which allowed them to identify 142 metabolites that were significantly altered by more than 1.5 times in the diabetic mice. Of 142 metabolites, 126 were upregulated (or increased) and 16 were downregulated (or decreased).

Succinate was the first metabolite in the energy pathway, and with its more than 20-fold increased concentration, it overwhelmed the energy pathways. Additionally, the diabetic mice had considerably lower spongy bone mass, known as trabecular bone, making it easy to fracture.

"The bottom line is that the high level of succinate combined with the finding of more fragile bone points to a new target to protect bone," said Yuqi Guo, MD, associate research scientist at NYU Dentistry, and the study's first author.

"The results are important because diabetics have a significantly higher fracture risk and their healing process is always delayed," said Xin Li, PhD, associate professor of basic science and craniofacial biology at NYU Dentistry, and the study's senior investigator. "In our study, the hyperglycemic mice had increased bone resorption [the breakdown and absorption of old bone], which outpaced the formation of new bone. This has implications for bone protection, as well as for the treatment of diabetes-associated collateral bone damage."

Dr. Guo and his team utilized a relatively new field of research called metabolomics to examine the bone marrow. The technique examines the small molecules, or metabolites, within cells, bio-fluids, tissue, or organisms and their interactions within the larger system, called a metabolome. Metabolomics is an extremely powerful tool because it can depict the underlying biochemical activity and signaling between cells and tissues. It is proving invaluable in identifying biomarkers and pinpointing potential drug targets for many diseases.

This study builds on previous research by Dr. Li's laboratory that showed, for the first time, significant accumulation of succinate in the bone marrow and serum of hyperglycemic mice. It opens the door to pursuing regulating succinate for protecting bone in diabetics.

Diabetes affects 29.1 million Americans or 9.3% of the population in the United States, according to 2012 Centers for Disease Control and Prevention data. Bone complications, such as hip or back fractures, can be devastating. The Women's Health Initiative found that type 2 diabetes was linked to a 20% risk increase in fractures.

###

Other coauthors from NYU include Chengzhi Xie, Jian Yang, Tao Yu, Ruohan Zhang, Tianqing Zhang, and Deepak Saxena. Xiyan Li and Michael Snyder from Stanford University and Yinqjie Wu, from Dalian Medical University, Liaoning, China, also contributed to this research.

The National Institutes of Health (NIH) grants R01CA180277 and R03 CA 172894 and NYU Provost Office Mega Grant Seed Fund Initiative supported Dr. Li's work. Funding to other coauthors came from the California Institute for Regenerative Medicine, the Ministry of Science and Technology of China, the National Science Foundation of China, and the National Science Foundation of Liaoning.

About NYU College of Dentistry

Founded in 1865, New York University College of Dentistry (NYU Dentistry) is the third oldest and the largest dental school in the US, educating more than 8 percent of all dentists. NYU Dentistry has a significant global reach with a highly diverse student body. Visit http://dental.nyu.edu for more.

Media Contact

christopher James
[email protected]
212-998-6876
@nyuniversity

http://www.nyu.edu

http://bit.ly/2tXPe4D

Share12Tweet7Share2ShareShareShare1

Related Posts

Empowering Self-Advocacy in Young Adults with Disabilities

November 5, 2025

Micron-Scale Fiber Mapping Without Sample Prep

November 5, 2025

Decoding How Viruses Outperform Expectations

November 5, 2025

Exploring Career Journeys of Male Nurse Managers

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Oxide Boosts Perovskite Solar Cell Efficiency

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.