• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NYU chemists color world of 3-D crystals with advances in self-assembly

Bioengineer by Bioengineer
March 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of New York University chemists has created self-assembled, three-dimensional DNA crystals that can bind a separate, dye-bearing strand–a breakthrough that enhances the functionality of these tiny building blocks. The advance, reported in the journal Nature Chemistry, offers promise for the creation of enhanced synthetic chemistry.

"The work shows that we can change the contents of a crystal by adding moveable components a billionth of a meter in size," explains Nadrian Seeman, a professor in NYU's Department of Chemistry and the paper's senior author.

Previously, Seeman and his colleagues created self-assembled, 3D DNA structures as well as 2D DNA structures that can also take on a range of shapes. The innovation reported in Nature Chemistry shows that "what could previously be done only in 2D systems can now be done in 3D systems," he observes. "The internal contents of crystals can be manipulated after they are formed."

Specifically, the development raises the possibility of "scaling up" nanomechanical devices–in 3D, these creations can potentially be more complex and sophisticated than their 2D counterparts.

"We can now move on to controlling nanomechanical assembly lines using the same approach," Seeman notes.

The authors demonstrated a small-scale 2D assembly line a few years ago.

As reported in Nature Chemistry, the scientists merged a self-assembled 3D DNA crystal with a strand bearing either blue or red colored dyes. They commenced with a clear crystal, which they sought to bind with either a red-dye-bearing or a blue-dye-bearing strand. In both instances, the linkage was successful: when the 3D DNA crystal combined with the red-dye-bearing strand, the crystal turned red; when the red-dye-bearing strand was removed and it was combined with the blue-dye-bearing strand, the crystal turned blue. This cycle, using different-colored strands, can be repeated numerous times, the researchers discovered.

"We can change the state of a crystal after it has been self-assembled by adding and removing strands," Seeman notes. "The colors just show that we can do it."

###

The research was supported by grants from the National Institute of General Medical Sciences (GM-29554), the National Science Foundation (CMMI-1120890, EFRI-1332411, CCF-1117210, CCF-1526650), the Army Research Office (MURI W911NF-11-1-0024), the Office of Naval Research (MURI N000140911118), the U.S. Department of Energy (DE-SC0007991), and the Gordon and Betty Moore Foundation (GBMF3849).

DOI: 10.1038/nchem.2745

Media Contact

James Devitt
[email protected]
212-998-6808
@nyuniversity

http://www.nyu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking Body and Mind: The Power of Skin Conductance

Tracking Body and Mind: The Power of Skin Conductance

October 12, 2025
High-Frequency Power Amplification with Amorphous Indium Tin Oxide

High-Frequency Power Amplification with Amorphous Indium Tin Oxide

October 12, 2025

Kidney Impairment Increases Healthcare Use in Diabetics

October 12, 2025

Unlocking EEG Connectomes for Neuroscience Breakthroughs

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1221 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Body and Mind: The Power of Skin Conductance

High-Frequency Power Amplification with Amorphous Indium Tin Oxide

Kidney Impairment Increases Healthcare Use in Diabetics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.