• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NYITCOM scientists to use innovative imaging technique in NIH-funded research on diabetic heart failure treatments

Bioengineer by Bioengineer
February 28, 2022
in Biology
Reading Time: 3 mins read
0
Impact of High Blood Sugar on Lysosomes
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team from New York Institute of Technology College of Osteopathic Medicine (NYITCOM), led by Biomedical Sciences Instructor Satoru Kobayashi, Ph.D., has secured a grant from the National Institutes of Health (NIH) National Heart, Lung, and Blood Institute. The three-year $428,400 grant will support innovative research that may deliver life-saving treatments for diabetic heart failure.  

Impact of High Blood Sugar on Lysosomes

Credit: Satoru Kobayashi

A research team from New York Institute of Technology College of Osteopathic Medicine (NYITCOM), led by Biomedical Sciences Instructor Satoru Kobayashi, Ph.D., has secured a grant from the National Institutes of Health (NIH) National Heart, Lung, and Blood Institute. The three-year $428,400 grant will support innovative research that may deliver life-saving treatments for diabetic heart failure.  

According to the Centers for Disease Control and Prevention, 34 million Americans have diabetes, a condition that doubles their risk for heart disease. One form of heart disease, diabetic heart failure, occurs when excess blood sugar damages cardiovascular tissue, including the heart’s muscles. As damage accrues over time, the heart slowly loses its ability to pump blood to the body, leading to death. 

However, it is unclear how diabetic heart failure develops, given that the heart’s cells, like all cells in the body, contain built-in defense systems. Specifically, cells are armed with lysosomes, structures that repair damage and remove waste. In addition, pinpointing why cell defense systems fail is challenging, as many fluorescent dyes that make lysosomes visible under a microscope highlight either functional or impaired lysosomes, not both, and their staining effects are short-lived.

Kobayashi theorizes that diabetic heart failure develops when excess blood sugar lowers the acidity of lysosomes within heart muscle cells, rendering the cells defenseless. The researchers have also developed a fluorescent microscopy imaging technique that will stain lysosomes long enough to trace how they are impaired, as well as how their defensive properties can be restored.

“Lysosomes are very acidic, which allows them to digest and remove harmful cell waste, but excess blood sugar may lower their acidity, impairing the cell’s defense system. Even worse, the injured lysosomes leak acids and undigested wastes, which accelerates cellular damage.  This may explain why the diabetic heart cannot heal itself,” says Kobayashi, who has dedicated his career to researching new treatments for heart disease.

Using their innovative imaging technique, the researchers will analyze how changes in lysosome acidity impact heart function in mice with developing diabetes. The study’s subjects will be split into two groups: those with hearts containing more impaired lysosomes (lowered acidity) vs. those with hearts containing lysosomes that are better protected (reinforced acidity). If protecting lysosomes improves heart function, the findings may lead to new treatments for heart failure.

Other NYITCOM researchers involved include Biomedical Sciences Professor and Department Chair Anthony (Martin) Gerdes, Ph.D., Senior Research Associate Yuan Huang, Ph.D., and Associate Professor Youhua Zhang, Ph.D.

The NIH, part of the U.S. Department of Health and Human Services, is the largest biomedical research agency in the world. This grant was supported by the NIH National Heart, Lung, and Blood Institute under Award Number 1R15HL161737-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.



Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Exploring N-Succinyl Chitosan Gel: Synthesis and Safety

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.