• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NUS researchers discover pathway by which blood cells release a potent signalling factor

Bioengineer by Bioengineer
October 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Long N. Nguyen

The bloodborne chemical signal sphingosine-1-phosphate (S1P) is released by blood cells to regulate immune and vascular functions. How S1P is released to the circulation was unknown for a long time, until now. On October 18, researchers from the National University of Singapore (NUS) Yong Loo Lin School of Medicine reported online in the prestigious journal Nature that they had discovered this pathway in blood cells. Their findings have broad implications for the treatment of various immune and vascular diseases.

S1P is required as an extracellular signal for the trafficking of immune cells such as T and B cells in the circulation. These cells are part of the adaptive immune response, an important component of normal immunity. However, they become detrimental in conditions such as autoimmune and inflammatory diseases. Blocking of the S1P signalling pathway with fingolimod phosphate, a chemical compound that is analogous to S1P, has been successfully used in the treatment of multiple sclerosis.

Lack of S1P signalling is also harmful to blood vessels, often resulting in vascular complications such as cardiovascular diseases and stroke. In the study, performed by Assistant Professor Long N. Nguyen and his team (which includes postdoctoral fellow Vu M. Thiet and several NUS students), the researchers discovered the way blood cells produce S1P for signalling roles. They found that mice lacking the major facilitator superfamily transporter 2b (Mfsd2b) protein in their blood cells had low levels of S1P in the circulation, which resulted in an abnormally low circulating lymphocyte count and increased sensitivity to shock. Their breakthrough findings pave the way for the manipulation of circulating S1P levels for the treatment of inflammatory and vascular diseases.

Surprisingly, they also found that mice that lack Mfsd2b exhibited low red blood cell counts and were sensitive to chemotherapy and radiotherapy. This implies that increasing plasma S1P levels could be beneficial to cancer patients receiving chemotherapy and radiotherapy treatments.

For a long time, researchers have suspected that hematopoietic cells constitute the major S1P supplier to the circulation. However, the molecular transport machinery was missing, making it a daunting task to understand the roles of this chemical signal in circulation. "Our study identified a critical molecular target for sphingosine-1-phosphate production," explains Dr Nguyen, who is from the Department of Biochemistry at the Yong Loo Lin School of Medicine. "This opens up new avenues of investigation aimed at regulating sphingosine-1-phosphate signalling for the treatment of various diseases."

###

In addition to Assistant Professor Nguyen's team, the study also involved researchers at the NUS Centre for Life Sciences (CeLS) who were led by Professor Markus Wenk, as well as scientists at the Cancer Science Institute (CSI), the Biomedical Institute for Global Health Research and Technology (BigHeart), the National University Hospital (NUH), Duke-NUS Medical School, and the NUS Department of Biomedical Engineering. The research was mainly supported by a New Investigator Grant from the Singapore Ministry of Health's National Medical Research Council and an NUS Young Investigator Award.

Media Contact

Ing-Wei Khor
[email protected]

http://medicine.nus.edu.sg/corporate/index.html

Related Journal Article

http://dx.doi.org/10.1038/nature24053

Share12Tweet8Share2ShareShareShare2

Related Posts

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

November 9, 2025
Embryonic Heat Manipulation: Metabolic Programming Insights

Embryonic Heat Manipulation: Metabolic Programming Insights

November 9, 2025

Weight Loss Medications Safe for Patients with High Triglycerides: No Increased Risk of Pancreatitis or Cardiac Events

November 9, 2025

Exploring Social Support’s Impact on Geriatric Cancer Patients

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

Embryonic Heat Manipulation: Metabolic Programming Insights

Weight Loss Medications Safe for Patients with High Triglycerides: No Increased Risk of Pancreatitis or Cardiac Events

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.