• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NUS researchers devise revolutionary technique to generate hydrogen more efficiently from water

Bioengineer by Bioengineer
October 27, 2022
in Chemistry
Reading Time: 4 mins read
0
NUS research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionise the way water is broken down to release hydrogen gas – an element crucial to many industrial processes.

NUS research team

Credit: National University of Singapore

A team of researchers from the National University of Singapore (NUS) have made a serendipitous scientific discovery that could potentially revolutionise the way water is broken down to release hydrogen gas – an element crucial to many industrial processes.

 

The team, led by Associate Professor Xue Jun Min, Dr Wang Xiaopeng and Dr Vincent Lee Wee Siang from the Department of Materials Science and Engineering under the NUS College of Design and Engineering (NUS CDE), found that light can trigger a new mechanism in a catalytic material used extensively in water electrolysis, where water is broken down into hydrogen and oxygen. The result is a more energy-efficient method of obtaining hydrogen.

 

This breakthrough was achieved in collaboration with Dr Xi Shibo from the Institute of Sustainability for Chemicals, Energy and Environment under the Agency for Science, Technology and Research (A*STAR); Dr Yu Zhigen from the Institute of High Performance Computing under A*STAR; and Dr Wang Hao from the Department of Mechanical Engineering under the NUS CDE.

 

“We discovered that the redox center for electro-catalytic reaction is switched between metal and oxygen, triggered by light,” said Assoc Prof Xue. “This largely improves the water electrolysis efficiency.”

 

The new finding can potentially open up new and more effective industrial methods of producing hydrogen and putting this environmentally friendly source of fuel within the reach of more people and industries.

 

Assoc Prof Xue and his team detailed their discovery in a research paper published in renowned scientific journal Nature on 26 October 2022.

 

The accidental breakthrough

 

Under normal circumstances, Assoc Prof Xue and his team may not have been able to come across such a groundbreaking discovery. But an accidental power trip of the ceiling lights in his laboratory almost three years ago allowed them to observe something that the global scientific community has not yet managed to do.

 

Back then, the ceiling lights in Assoc Prof Xue’s research lab were usually turned on for 24 hours. One night in 2019, the lights went off due to a power trip. When the researchers returned the next day, they found that the performance of a nickel oxyhydroxide-based material in the water electrolysis experiment, which had continued in the dark, had fallen drastically.

 

“This drop in performance, nobody has ever noticed it before, because no one has ever done the experiment in the dark,” said Assoc Prof Xue. “Also, the literature says that such a material shouldn’t be sensitive to light; light should not have any effect on its properties.”

 

The electro-catalytic mechanism in water electrolysis is a very well-researched topic, while the nickel-based material is a very common catalytic material. Hence, in order to establish that they were on the verge of discovering something groundbreaking, Assoc Prof Xue and his team embarked on numerous repeated experiments. They dug deeper into the mechanics behind such a phenomenon. They even repeated the experiment outside of Singapore to ensure that their findings were consistent.

 

Three years on, Assoc Prof Xue and his team were finally able to share their findings publicly in a paper.

 

Next steps

 

With their findings, the team is now working on designing a new way to improve industrial processes to generate hydrogen. Assoc Prof Xue is suggesting making the cells containing water to be transparent, so as to introduce light into the water splitting process.

 

“This should require less energy in the electrolysis process, and it should be much easier using natural light,” said Assoc Prof Xue. “More hydrogen can be produced in a shorter amount of time, with less energy consumed.”

 

Food companies use hydrogen gas to turn unsaturated oils and fats into saturated ones, which give us margarine and butter. Hydrogen is also used to weld metals together, as it can generate a high temperature of 4,000 deg C. The petroleum industry uses the gas to remove sulphur content from oil.

 

Moreover, hydrogen can potentially be used as a fuel. Long-touted as a sustainable fuel, hydrogen fuel produces no emissions as it burns upon reacting with oxygen — no ignition is needed, making it a cleaner and greener fuel source. It is also easier to store, making it more reliable than solar-powered batteries.

 

Assoc Prof Xue is glad that the findings from his team of researchers could contribute to scientific discovery. He thinks that the way to develop science is not to keep finding new ways to do what has already been done, but to constantly push the boundaries.

 

“It’s only through accumulation of new knowledge that we can improve society progressively,” said Assoc Prof Xue.



Journal

Nature

DOI

10.1038/s41586-022-05296-7

Article Title

Pivotal role of reversible NiO6 geometric conversion in oxygen evolution

Article Publication Date

26-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    72 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbiota on Tongue: Key to Autism Treatment Success

Autism Genetics and Development Vary by Diagnosis Age

Exosomes Boost Ovarian Function by Halting Pyroptosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.