• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NUS researchers develop smart gaming glove that puts control in your hands

Bioengineer by Bioengineer
August 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The InfinityGloveTM contains ultra-sensitive microfibre sensors that can translate hand gestures into in-game commands, allowing users to play first-person shooters such as Battlefield V without the need for a traditional controller or a keyboard

IMAGE

Credit: National University of Singapore

Simply flex your index finger to fire your weapon and rotate your wrist clockwise to move forward. Immersive controls have always been a pipedream in the world of gaming but is steadily becoming reality. A team of researchers from the National University of Singapore (NUS), led by Professor Lim Chwee Teck, has developed a smart glove – called ‘InfinityGloveTM’ – that allows users to mimic a variety of in-game controls using simple hand gestures.

While the concept of controlling a game using your hands is not new, the main problems have always been weight and flexibility. The current generation of smart glove type controllers available on the market are usually bulky and rigid as they rely on conventional sensors which put the hard in hardware.

The InfinityGloveTM, overcomes existing problems with weight and flexibility by weaving ultra-thin, highly sensitive microfibre sensors into the material of the glove. These sensors are not only lightweight and accurate, but also fulfil the role of wires thus reducing the need for additional wiring. Currently, the prototype weighs about 40 grams, and is flexible and comfortable.

Precise and quick gesture-based remote control

Currently, each InfinityGloveTM contains a total of five thread-like sensors, one for each finger. This network of sensors can interface with the game software to produce accurate three-dimensional (3D) positions of a moving hand. Various gestures made by the user’s hands are then mapped to specific inputs that are found on a regular controller. To date, the team has mapped a total of 11 inputs and commands which will allow users to play games such as Battlefield V.

The application of this microfibre sensor technology is the breakthrough innovation that enables the InfinityGloveTM to accurately map finger gestures for human-machine interaction. The sensor is made up of a thin and stretchable rubber-like microfibre, about the same thickness as a strand of human hair, that is filled with a conductive liquid metal. A small electric current runs through the conductive liquid metal, creating an electrical reading signal that changes when the fibres are bent and as the liquid metal is displaced. This microfibre sensor was developed by the team back in 2017 and was previously used to measure pulse and bandage pressure, but they have since adapted it for the smart glove by improving the strain sensing capabilities.

When linked up to the team’s proprietary software, the sensors can rapidly translate the gestures via electrical signals into command inputs at a speed that is almost the same as pressing a button on the keyboard. The InfinityGloveTM can be wirelessly connected to a computer and is lightweight.

Redefine gaming, rehabilitation and robotic control

The team took two years to develop a working prototype of the InfinityGloveTM and is also producing the microfibre sensors commercially for other applications.

Professor Lim Chwee Teck, Director of the NUS Institute for Health Innovation & Technology, said, “We were very much inspired by the need to remotely control tasks with just hand gestures. Current commercially available technology is not very responsive and causes a strain on the user’s hands after prolonged use due to their bulky setup. We envision that gesture-based control using our lightweight smart gloves can bring us one step closer to a truly immersive interface between humans and machines.”

Other applications for the InfinityGloveTM include hand rehabilitation for patients as gamification motivates patients to continue their hand exercise regimes through immersive play, and medical professionals can track the progress of their patient’s joint movements at the same time.

The NUS team’s next steps include extending the glove’s capabilities into the world of virtual reality, complex games and robotic control. This technology is being commercialised by a NUS start-up, Microtube Technologies, co-founded by Prof Lim and his team members, Dr Yeo Joo Chuan and Dr Yu Longteng.

###

Media Contact
Carolyn Fong
[email protected]

Original Source

https://news.nus.edu.sg/research/nus-researchers-develop-new-smart-gaming-glove

Tags: Biomedical/Environmental/Chemical EngineeringHealth CareRehabilitation/Prosthetics/Plastic SurgeryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

October 6, 2025
blank

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

October 5, 2025

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engaging Families in Advance Care Planning: A Study

N6-methyladenosine Enhances Pork Muscle Quality via Myofiber Regulation

Designing Thiadiazole β-Carboline Derivatives as Glucosidase Inhibitors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.