• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NTU Singapore researchers create quantum chip 1,000 times smaller than current setups

Bioengineer by Bioengineer
October 31, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Nanyang Technological University, Singapore (NTU Singapore) have developed a quantum communication chip that is 1,000 times smaller than current quantum setups, but offers the same superior security quantum technology is known for.

IMAGE

Credit: NTU Singapore


Researchers at Nanyang Technological University, Singapore (NTU Singapore) have developed a quantum communication chip that is 1,000 times smaller than current quantum setups, but offers the same superior security quantum technology is known for.

Most leading security standards used in secure communication methods – from withdrawing cash from the ATM to purchasing goods online on the smartphone – does not leverage quantum technology. The electronic transmission of the personal identification number (PIN) or password can be intercepted, posing a security risk.

Roughly 3mm in size, the tiny chip developed by NTU scientists uses quantum communication algorithms to provide enhanced security compared to existing standards. It does this by integrating passwords within the information that is being delivered, forming a secure ‘quantum key’. After the information is received, it is destroyed along with the key, making it an extremely secure form of communication.

It also needs 1,000 times less space than current quantum communication setups that can be as big as a refrigerator or even take up the space of an entire room or office floor. This opens doors for more secure communication technologies that can be deployed in compact devices such as smartphones, tablets and smart watches. It also lays the foundation for better encryption methods for online transactions and electronic communication.

Led by NTU Professor Liu Ai Qun, and Associate Professor Kwek Leong Chuan, the team’s findings were published in a leading peer-reviewed journal, Nature Photonics.

Prof Liu, who is from NTU’s School of Electrical and Electronic Engineering, said, “In today’s world, cyber security is very important as so much of our data are stored and communicated digitally. Almost all digital platforms and repositories require users to input their passwords and biometric data, and as long as this is the case, it could be eavesdropped on or deciphered. Quantum technology eliminates this as both the password and information are integrated within the message being sent, forming a ‘quantum key’.”

Assoc Prof Kwek explains that quantum communication works by using randomised strings of code to encrypt the information, which can only be opened by the intended recipient with the correct ‘key’. There is no need for additional passwords or biometric data to be transmitted, which is the standard practice in current forms of communication.

“It is like sending a secured letter. Imagine that the person who wrote the letter locked the message in an envelope with its ‘key’ also inside it. The recipient needs the same ‘key’ to open it. Quantum technology ensures that the key distribution is secure, preventing any tampering to the ‘key'”, said Assoc Prof Kwek, a physicist at NTU’s National Institute of Education.

Military-grade communication tech, made cost-effective

The world’s biggest tech companies such as Google and IBM are racing to develop quantum supercomputers that would revolutionise computing at speeds now inconceivable.

One highly anticipated strength of quantum technology lies in cryptography, the art of secret communication.

With the proliferation of Internet services, emails and messaging platforms such as WhatsApp, Facebook, Skype, Snapchat, Telegram etc., have created their own secured channels for communication – what is known as “classical channels”.

In contrast, “quantum channels” that carry information have security protocols that are integrated into the encrypted data. Each channel is uniquely different from each other, reducing or even eliminating the risk of information being intercepted or leaked during transmission.

Simply put, quantum technology does not require additional transmissions of passwords or biometric data that is necessary in “classical channels”. This eliminates the risk of interception or information being leaked, creating an almost unbreakable encryption.

The quantum communication chip developed by the NTU researchers will be cost effective as it uses standard industry materials such as silicon, which also makes it easy to manufacture.

Prof Liu said, “This is the future of communication security and our research brings us closer to quantum computing and communication. It will help spark the creation of next-generation communication devices, as well as enhance digital services such as online financial portals of banks, and digital government services.”

The NTU team is now looking to develop a hybrid network of traditional optical communication systems and quantum communication systems. This will improve the compatibility of quantum technologies that can be used in a wider range of applications such as internet connectivity.

###

Note to Editors:

Paper titled “An integrated silicon photonic chip platform for continuous-variable quantum key distribution” published in Nature Photonics on 12 Aug 2019.

Media contact:

Mr Nur Amin Shah

Manager, Media Relations

Corporate Communications Office

Nanyang Technological University

Email: aminshah(a.t.)ntu.edu.sg

About Nanyang Technological University, Singapore

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,000 undergraduate and postgraduate students in the Engineering, Business, Science, Humanities, Arts, & Social Sciences, and Graduate colleges. It also has a medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes – the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering – and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

Ranked 11th in the world, NTU has been placed the world’s top young university for the past six years. The University’s main campus is frequently listed among the Top 15 most beautiful university campuses in the world and it has 57 Green Mark-certified (equivalent to LEED-certified) building projects, of which 95% are certified Green Mark Platinum. Apart from its main campus, NTU also has a campus in Novena, Singapore’s healthcare district.

For more information, visit http://www.ntu.edu.sg.

Media Contact
Amin Shah
[email protected]
65-659-04714

Related Journal Article

http://dx.doi.org/10.1038/s41566-019-0504-5

Tags: Computer ScienceElectrical Engineering/ElectronicsHardwareInternetMultimedia/Networking/Interface DesignResearch/DevelopmentSuperconductors/SemiconductorsSystem Security/HackersTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Water-Based Propolis Boosts 5-FU Against GI Cancers

Celebrating 5 Years of the Early Career Geriatricians Initiative

Scalable Synthesis Unlocks Saxitoxin and Analogs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.