• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

NTU scientists develop laser system that generates random numbers at ultrafast speeds

Bioengineer by Bioengineer
February 25, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NTU Singapore

An international team of scientists has developed a system that can generate random numbers over a hundred times faster than current technologies, paving the way towards faster, cheaper, and more secure data encryption in today’s digitally connected world.

The random generator system was jointly developed by researchers from Nanyang Technological University, Singapore (NTU Singapore), Yale University, and Trinity College Dublin, and made in NTU.

Random numbers are used for a variety of purposes, such as generating data encryption keys and one-time passwords (OTPs) in everyday processes such online banking and e-commerce to shore up their security.

The system uses a laser with a special hourglass-shaped cavity to generate random patterns, which are formed by light rays reflecting and interacting with each other within the cavity. By reading the patterns, the system generates many series of random numbers at the same time (see Image 1).

The researchers found that like snowflakes, no two number sequences generated using the system were the same, due to the unpredictable nature of how the light rays reflect and interact with each other in the cavity.

The laser used in the system is about one millimeter long, smaller than most other lasers. It is also energy efficient and can be operated with any household power socket, as it only requires a one-ampere (1A) current.

In their study published in one of the world’s leading scientific journals Science on 26 February 2021, the researchers verified the effectiveness of their random number generator using two tests, including one published by the US National Institute of Standards and Technology.

The research team has proven that the NTU-made random number generator which is faster and more secure than existing comparable technologies, could help safeguard users’ data in a world that is steadily relying more on Internet transactions (see Image 2).

Professor Wang Qijie from NTU’s School of Electrical and Electronic Engineering & School of Physical and Mathematical Science, as well as The Photonics Institute, who led the NTU team involved in the international research, said, “Current random number generators run by computers are cheap and effective. However, they are vulnerable to attacks, as hackers could predict future number sequences if they discover the algorithm used to generate the numbers. Our system is safer as it uses an unpredictable method to generate numbers, making it impossible for even those with the same device to replicate.”

Dr Zeng Yongquan, a Research Fellow from NTU’s School of Physical and Mathematical Sciences, who co-designed the laser system, said: “Our system surpasses current random number generators, as the method can simultaneously generate many more random sequences of information at an even faster rate.”

The team’s laser system can also generate about 250 terabytes of random bits per second – more than a hundred times faster than current computer-based random number generators.

At its speed, the system would only take about 12 seconds to generate a body of random numbers equivalent to the size of information in the largest library in the world – the US Library of Congress.

Elaborating on the future of the system, the team is working on making the technology ready for practical use, by incorporating the laser into a compact chip that enables the random numbers generated to be fed directly into a computer.

###

Media Contact
Joseph Gan
[email protected]

Tags: Algorithms/ModelsNanotechnology/MicromachinesOpticsSystems/Chaos/Pattern Formation/ComplexityTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025
blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

UmamiPredict: AI Unveils Umami Taste of Molecules

Cerebral Resistive Indices Linked to Premature Hemorrhage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.