• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NSF CAREER award to study accelerated aging of insulation used in power systems

Bioengineer by Bioengineer
May 6, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech

It is expected that by 2030, 80 percent of all electric power will flow through power electronics systems.

With an increasing need for more energy to power homes, schools, and businesses, stress on the United States’ deteriorated and aged electric power network is reaching a critical point. Yet emerging wide bandgap-based technologies, leading to higher power density and efficiency, can accelerate the aging and degradation of insulation systems and lead to unexpected failures.

“Because electrical insulation determines the life of an electrical system, whether we are talking about the country’s electric power grid, a computer, or an electric vehicle, it is important for us to find solutions to aging insulation systems,” said Mona Ghassemi, assistant professor in the Bradley Department of Electrical and Computer Engineering.

Ghassemi was recently awarded a five-year $500,000 National Science Foundation Faculty Early Career Development (CAREER) award to conduct research that addresses this issue. The CAREER award is NSF’s most prestigious award in support of early-career faculty.

Replacement of a faulted power system component can take up to a few days, and during that time, the power grid is more prone to blackouts. Blackouts can negatively impact communities and the economy in a significant way. The Northeast blackout that occurred in August 2003, for instance, affected approximately 50 million people in eight U.S. states as well as the Ontario province in Canada, resulting in $6 billion in economic losses in goods and services, said Ghassemi.

Ghassemi will study accelerated aging of insulation systems used in all components of power systems, such as rotating machines, transformers, cables, and cable terminations under fast, repetitive voltage pulses originated by next-generation wide-bandgap-based conversion systems. The project will also develop high-frequency thermal-electromagnetic transient models for the components to determine overvoltages, electrical stress, and thermal stress under wide bandgap-based voltages pulses.

“Electrical insulators are materials with a high resistivity that allows them to prevent electric current from flowing where it is not wanted,” Ghassemi said. “An electrical system without insulation is as useful as an automobile without tires. It has all the potential to perform a useful service; however, it is missing a critical component. Therefore, any electrical system must have adequate electrical insulation to perform under normal operating conditions and also provide insulation at the extremes when the system is overstressed.”

Ghassemi will conduct her research in close collaboration with the world’s largest manufacturing companies of power system apparatuses and one of the largest utilities in the United States.

Her NSF CAREER project also integrates an educational component to help train the next generation of high electric field and electrical insulation engineers and researchers, who are needed to maintain the competitive vitality of the U.S. power system and electronics workforce.

The education plan also aims to open the pipeline at the high-school level. Ghassemi will collaborate with the Center for the Enhancement of Engineering Diversity at Virginia Tech on K-12 outreach activities designed to attract women and ethnic minorities to the field of electrical engineering.

A Virginia Tech faculty member since 2017, Ghassemi has also won another award for young faculty this year, the 2020 Air Force Office of Scientific Research Young Investigator (YIP) Program Award. She is only the second faculty member in the Department of Electrical Engineering to receive both the NSF CAREER and DOD YIP award in the same year.

Ghassemi earned her Master of Science and Ph.D. degrees in electrical engineering from the University of Tehran, Iran, in 2007 and 2012, respectively.

Her professional involvement includes at-large member of the Administrative Committee of the Institute of Electrical and Electronics Engineers Dielectrics and Electrical Insulation Society for 2020-2023; corresponding member of the IEEE Conference Publication Committee of the IEEE Power & Energy Society; and active member of several CIGRE working groups and the IEEE Task Forces.

Ghassemi is also a senior member of the Institute of Electrical and Electronics Engineers; a registered Professional Engineer in the Province of Ontario, Canada; and an associate editor of IEEE Transactions on Industry Applications, IET High Voltage, and the International Journal of Electrical Engineering Education.

###

Media Contact
Suzanne Irby
[email protected]

Original Source

https://vtnews.vt.edu/articles/2020/05/eng-nsf-career-mona-ghassemi.html

Tags: Electrical Engineering/ElectronicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Retraction: circfarsa miR-330-5p Bladder Cancer Link

October 21, 2025

Emotion Regulation’s Impact on Suicide Risk in Autistic Adults

October 21, 2025

Revolutionizing FePO4: Diverse Sources for LiFePO4 Batteries

October 21, 2025

Advanced Fe/N-Doped Carbon Catalyst Boosts Oxygen Reduction

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    124 shares
    Share 50 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Retraction: circfarsa miR-330-5p Bladder Cancer Link

Emotion Regulation’s Impact on Suicide Risk in Autistic Adults

Revolutionizing FePO4: Diverse Sources for LiFePO4 Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.