• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

NSF awards grant for evolution-inspired design of therapeutic RNAs

Bioengineer by Bioengineer
March 21, 2024
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team led by Dr. Samie Jaffrey, the Greenberg-Starr Professor of Pharmacology at Weill Cornell Medicine, has been awarded a three-year, $1.65 million grant for RNA research under a biotechnology-development program run by the U.S. National Science Foundation.

Dr. Samie Jaffrey

Credit: Credit: John Abbott

A team led by Dr. Samie Jaffrey, the Greenberg-Starr Professor of Pharmacology at Weill Cornell Medicine, has been awarded a three-year, $1.65 million grant for RNA research under a biotechnology-development program run by the U.S. National Science Foundation.

The competitive Molecular Foundations for Biotechnology program funds cutting-edge research that lays the groundwork for future clinical and industrial biotechnologies. The new award is one of nine that have been given to research teams across the United States this year, with funding assistance from the National Institutes of Health, to advance the promise of RNA-based therapeutics and other products.

Dr. Jaffrey and co-principal investigator Dr. Matthew Shoulders, a chemistry professor at the Massachusetts Institute of Technology, will use their award to develop general techniques for designing RNAs to have desired biological activities.

“We’re honored to have been chosen for this award, which we hope will enable us to accelerate progress in this challenging, but highly promising, field,” Dr. Jaffrey said.

RNA, ribonucleic acid, is a chemical cousin of DNA and is ubiquitous in cells. Messenger RNA molecules (mRNAs) are single-stranded and work as go-betweens in the conversion of genetic information to proteins. Other, RNAs, called noncoding RNAs, have a variety of regulatory functions, and form parts of important cellular machines such as protein-making ribosomes.

Because RNAs are capable of binding tightly and with high specificity to proteins as well as to other RNAs and DNA, they are viewed as having great potential as therapeutics. Yet their therapeutic use so far has been limited mostly to mRNA-based vaccines, which encode viral proteins to stimulate immune responses.

“RNAs can actually do so much more, and we’re particularly interested in their ability to bind to proteins to create new protein complexes and cellular signaling events,” Dr. Jaffrey said.

Getting RNAs to act as “molecular glue” in this sense is virtually impossible to do with direct design techniques, given the complexity of RNA biology. Scientists generally can’t predict in advance how any large strand of RNA will fold up in a particular cellular environment, and what biological activity it will have. Therefore, Dr. Jaffrey and Dr. Shoulders will develop a more indirect and iterative design approach that mimics biological evolution.

Their system is based on one that Dr. Shoulders developed for evolving therapeutic proteins, which uses a virus that is engineered to replicate as the protein exhibits improved functions. Dr. Jaffrey and Dr. Shoulders have created new viruses that replicate depending on the biological properties of a viral-encoded RNA. As the virus replicates, the RNA undergoes continuous mutations allowing improved RNAs to drive viral replication.

“This system creates a system of Darwinian evolution, where RNAs evolve powerful functions in cells,” Dr. Jaffrey said. “The long-term goal is to use such systems to discover therapeutic RNAs that we could never have even imagined when taking the traditional design approach.”



Share12Tweet8Share2ShareShareShare2

Related Posts

CrAAVe-seq reveals key neuronal genes in vivo

CrAAVe-seq reveals key neuronal genes in vivo

August 22, 2025
blank

Blocking Spermine Metabolism Boosts Pancreatic Cancer Immunity

August 22, 2025

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

August 22, 2025

AI Deciphers Brain Network Differences in Tremors

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Metabolic Profiling Reveals RCC Drug Response

Electrochemical Hybrid Flow Cell Captures CO2 Directly

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.