• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

NRL scientists find high prevalence of antibiotic resistance in Kenya

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: U.S. Naval Research Laboratory/Lt. Cmdr. Michael Prouty-NAMRU-2 (Released)

WASHINGTON – Antibiotic resistance is one of the most significant global public health problems and is rising in many developing nations due to over-use of antimicrobial agents, widespread availability of counterfeit or substandard medicines and poor infection control measures.

In a joint effort between the U.S. Naval Research Laboratory (NRL), U.S. Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI), and University of Washington, the research team, using an NRL-developed microarray that detects over 200 different antibiotic resistance genes, tested bacteria from the intestinal tract of healthy individuals and ailing patients in the African country of Kenya, and discovered a high prevalence of bacteria strains resistant to commonly used antibiotics.

"These results suggest that there is selective pressure for the establishment and maintenance of resistant strains," said Dr. Chris Taitt, research biologist, NRL Center for Bio/Molecular Science and Engineering. "This is potentially due to agriculture and prophylactic use of antibiotics and further suggests the need for more effective public health policies and infection control measures than those currently implemented."

Specific to Kenya, widespread use of tetracycline in livestock production, use of trimethoprim/sulfamethoxazole (SXT) and chloramphenicol as first line therapeutics for typhoid, and prophylactic use of SXT in persons exposed to or infected with human immunodeficiency virus (HIV) might have contributed to the high prevalence of resistance.

A total of 90 Klebsiella spp. bacterial strains were isolated from participants ranging in age from 4 months to 54 years. Half of the subjects were diagnosed with acute diarrheal illness, the other half were healthy individuals. Samples were collected from eight Kenyan clinics, including district hospitals of Kisumu, Kisii, Migori, and Homa Bay.

"While important for improvements to global health, an understanding of the types and prevalence of antibiotic resistance in under-characterized regions, such as the Great Horn of Africa, can additionally benefit deployed military personnel in making risk assessment for exposure to, and treatment of, resistant infections," Taitt said.

###

Portions of this work were separately funded by the Office of Naval Research/NRL through internal core funds, the Armed Forces Health Surveillance Branch-Global Emerging Infections Surveillance and Response Systems (AFHSB-GEIS), and the National Institutes of Health. The published findings are made available through PLoS One, under the heading "Antimicrobial resistance of Klebsiella pneumoniae stool isolates circulating in Kenya."

The U.S. Naval Research Laboratory provides the advanced scientific capabilities required to bolster our country's position of global naval leadership. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to advance research further than you can imagine. For more information, visit the NRL website or join the conversation on Twitter, Facebook, and YouTube.

Media Contact

Daniel Parry
[email protected]
202-767-2326
@USNRL

http://www.nrl.navy.mil

Original Source

https://www.nrl.navy.mil/media/news-releases/2017/NRL-Scientists-Find-High-Prevalence-of-Antibiotic-Resistance-in-Kenya http://dx.doi.org/10.1371/journal.pone.0178880

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Upward Bullying in China’s Nurse Managers

November 3, 2025
Quantum Network Entanglement Verified Without Measurement Devices

Quantum Network Entanglement Verified Without Measurement Devices

November 3, 2025

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

November 2, 2025

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.