• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NRL demonstrates new non-mechanical laser steering technology

Bioengineer by Bioengineer
November 19, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Jason Myers/U.S. Naval Research Laboratory)

WASHINGTON — Scientists at the U.S. Naval Research Laboratory have recently demonstrated a new nonmechanical chip-based beam steering technology that offers an alternative to costly, cumbersome and often unreliable and inefficient mechanical gimbal-style laser scanners.

The chip, known as a steerable electro-evanescent optical refractor, or SEEOR, takes laser light in the mid-wavelength infrared (MWIR) as an input and steers the beam in two dimensions at the output without the need for mechanical devices — demonstrating improved steering capability and higher scan speed rates than conventional methods.

"Given the low size, weight and power consumption and continuous steering capability, this technology represents a promising path forward for MWIR beam-steering technologies," said Jesse Frantz, research physicist, NRL Optical Sciences Division. "Mapping in the MWIR spectral range demonstrates useful potential in a variety of applications, such as chemical sensing and monitoring emissions from waste sites, refineries, and other industrial facilities."

The SEEOR is based on an optical waveguide – a structure that confines light in a set of thin layers with a total thickness of less than a tenth that of a human hair. Laser light enters through one facet and moves into the core of the waveguide. Once in the waveguide, a portion of the light is located in a liquid crystal (LC) layer on top of the core. A voltage applied to the LC through a series of patterned electrodes changes the refractive index (in effect, the speed of light within the material), in portions of the waveguide, making the waveguide act as a variable prism. Careful design of the waveguides and electrodes allow this refractive index change to be translated to high speed and continuous steering in two dimensions.

SEEORs were originally developed to manipulate shortwave infrared (SWIR) light – the same part of the spectrum used for telecommunications – and have found applications in guidance systems for self-driving cars.

"Making a SEEOR that works in the MWIR was a major challenge," Frantz said. "Most common optical materials do not transmit MWIR light or are incompatible with the waveguide architecture, so developing these devices required a tour de force of materials engineering."

To accomplish this, the NRL researchers designed new waveguide structures and LCs that are transparent in the MWIR, new ways to pattern these materials, and new ways to induce alignment in the LCs without absorbing too much light. This development combined efforts across multiple NRL divisions including the Optical Sciences Division for MWIR materials, waveguide design and fabrication, and the Center for Bio/Molecular Science and Engineering for synthetic chemistry and liquid crystal technology.

The resulting SEEORs were able to steer MWIR light through an angular range of 14°×0.6°. The researchers are now working on ways to increase this angular range and to extend the portion of the optical spectrum where SEEORs work even further. Complete details of this research can be found in the December 2018 edition of the Journal of the Optical Society of America, DOI: 10.1364/JOSAB.35.000C29.

###

Media Contact

Daniel Parry
[email protected]
202-767-2326
@USNRL

http://www.nrl.navy.mil

Original Source

https://www.nrl.navy.mil/news/releases/nrl-demonstrates-new-nonmechanical-laser-steering-technology http://dx.doi.org/10.1364/JOSAB.35.000C29

Share12Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis in Diabetes: Insights from Research

November 6, 2025

Berberine boosts CYP3A4 expression through PXR activation

November 6, 2025

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

November 6, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.