• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NREL research overcomes major technical obstacles in magnesium-metal batteries

Bioengineer by Bioengineer
April 3, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the Department of Energy's National Renewable Energy Laboratory (NREL) have discovered a new approach for developing a rechargeable non-aqueous magnesium-metal battery.

A proof-of-concept paper published in Nature Chemistry detailed how the scientists pioneered a method to enable the reversible chemistry of magnesium metal in the noncorrosive carbonate-based electrolytes and tested the concept in a prototype cell. The technology possesses potential advantages over lithium-ion batteries–notably, higher energy density, greater stability, and lower cost.

NREL researchers (from left) Seoung-Bum Son, Steve Harvey, Andrew Norman and Chunmei Ban are co-authors of the Nature Chemistry white paper, "An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes" working with a Time-of-flight secondary ion mass spectrometry. The device allows them to investigate material degradation and failure mechanisms at the micro- to nano-scale. (Photo by Dennis Schroeder / NREL)

"Being scientists, we're always thinking: what's next?" said Chunmei Ban, a scientist in NREL's Materials Science department and corresponding author of the paper, "An Artificial Interphase Enables Reversible Magnesium Chemistry in Carbonate Electrolytes." The dominant lithium-ion battery technology is approaching the maximum amount of energy that can be stored per volume, she said, so "there is an urgent need to explore new battery chemistries" that can provide more energy at a lower cost.

"This finding will provide a new avenue for magnesium battery design," said Seoung-Bum Son, a former NREL postdoc and scientist at NREL and first author of the paper. Other co-authors from NREL are Steve Harvey, Adam Stokes, and Andrew Norman.

An electrochemical reaction powers a battery as ions flow through a liquid (electrolyte) from the negative electrode (cathode) to the positive electrode (anode). For batteries using lithium, the electrolyte is a salt solution containing lithium ions. What's also important, is the chemical reaction must be reversible so that the battery can be recharged.

Magnesium (Mg) batteries theoretically contain almost twice as much energy per volume as lithium-ion batteries. But previous research encountered an obstacle: chemical reactions of the conventional carbonate electrolyte created a barrier on the surface of magnesium that prevented the battery from recharging. The magnesium ions could flow in a reverse direction through a highly corrosive liquid electrolyte, but that barred the possibility of a successful high-voltage magnesium battery.

In seeking to overcome these roadblocks, the researchers developed an artificial solid-electrolyte interphase from polyacrylonitrile and magnesium-ion salt that protected the surface of the magnesium anode. This protected anode demonstrated markedly improved performance.

Side-by-side illustrations show how NREL scientists solved a problem with making a rechargeable magnesium battery.

The scientists assembled prototype cells to prove the robustness of the artificial interphase and found promising results: the cell with the protected anode enabled reversible Mg chemistry in carbonate electrolyte, which has never been demonstrated before. The cell with this protected Mg anode also delivered more energy than the prototype without the protection and continued to do so during repeated cycles. Furthermore, the group has demonstrated the rechargeability of the magnesium-metal battery, which provides an unprecedented avenue for simultaneously addressing the anode/electrolyte incompatibility and the limitations on ions leaving the cathode.

In addition to being more readily available than lithium, magnesium has other potential advantages over the more established battery technology. First, magnesium releases two electrons to lithium's one, thus giving it the potential to deliver nearly twice as much energy as lithium. And second, magnesium-metal batteries do not experience the growth of dendrites, which are crystals that can cause short circuits and consequently dangerous overheating and even fire, making potential magnesium batteries much safer than lithium-ion batteries.

###

Other researchers involved with the project were Tao Gao and Chunsheng Wang of the University of Maryland; K. Xerxes Steirer of Colorado School of Mines; and Arthur Cresce and Kang Xu of the U.S. Army Research Laboratory.

Funding for the research came from the Laboratory Directed Research and Development Program at NREL.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Media Contact

David Glickson
[email protected]
303-275-4097
@nrel

http://www.nrel.gov

https://www.nrel.gov/news/press/2018/nrel-research-overcomes-major-technical-obstacles-in-magnesium-metal-batteries.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Surviving Deserts: The Adaptive Genus Tribulus

Surviving Deserts: The Adaptive Genus Tribulus

August 25, 2025
blank

Direct Repeats Discovered Near Intron Splice Sites

August 25, 2025

Pollinator Patterns and Phenology in Hohenbergia Species

August 25, 2025

Unveiling Archaeoniscus brodiei: Early Cretaceous Isopod Insights

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    136 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Genetic Diversity in Common Bean Traits

Combining EGCG and Camptothecin: A Melanoma Breakthrough

Food Insecurity and Diabetes: Pathways to Glycemic Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.