• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NREL pioneers cleaner route to upcycle plastics into superior products

Bioengineer by Bioengineer
March 5, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have discovered a method of plastics upcycling–transforming discarded products into new, high-value materials of better quality and environmental value–that could economically incentivize the recycling of waste plastics and help solve one of the world’s most looming pollution problems.

Published in Joule, “Combining reclaimed PET with bio-based monomers enables plastics upcycling,” describes how the NREL team chemically combined reclaimed polyethylene terephthalate (PET) plastic, in the form of single-use beverage bottles, with bio-based compounds to produce higher-value fiber-reinforced plastics (FRPs) that can be used in products from snowboards to vehicle parts to wind turbines. Not only are the resulting composites worth more than double the original PET, the FRPs exhibit twice the strength and improved adhesion to fiberglass when compared to the standard petroleum-derived FRP.

Two scientists look at glass flasks and tubes in a laboratory.

NREL Senior Research Fellow Gregg Beckham and Materials Scientist Nic Rorrer are working on a process of upcycling: breaking down PET in existing waste and combining it with compounds derived from biomass to make something more valuable, such as fiber-reinforced composite materials. Photo by Dennis Schroeder / NREL

“Most recycling today is downcycling–there’s very little financial motivation,” said NREL Senior Research Fellow Gregg Beckham, one of the primary authors of the paper. “Knowing that 26 million tons of PET are produced each year but only 30% of PET bottles are recycled in the United States, our findings represent a significant advancement in enabling the circular materials economy.”

The NREL team also included staff polymer researcher Nic Rorrer, who has previously worked with bio-based muconic acid and breaking down reclaimed PET. “We are excited to have developed a technology that incentivizes the economics of plastics reclamation,” Rorrer said. “The ultimate goal is to reduce the amount of waste plastics in landfills and oceans.”

In addition, this process is more energy efficient and less hazardous than standard manufacturing processes for petroleum-based FRPs. NREL performed a supply-chain analysis of the FRP materials and found substantial energy savings and greenhouse gas emission reductions when compared to the process for producing petroleum-based composites. This research represents a potential step forward in sustainable methods to upcycle plastics into long-lasting, high-performance materials that could boost recycling efforts throughout the world.

###

The work reported in Joule was enabled by funding from NREL’s Laboratory Directed Research and Development program, with additional funding from the U.S. Department of Energy’s (DOE’s) Bioenergy Technologies Office.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Media Contact
David Glickson
[email protected]

Related Journal Article

https://www.nrel.gov/news/press/2019/nrel-pioneers-cleaner-route-to-upcycle-plastics-into-superior-products.html
http://dx.doi.org/10.1016/j.joule.2019.01.018

Tags: Atmospheric ScienceBiochemistryBiologyChemistry/Physics/Materials SciencesEarth ScienceEcology/EnvironmentEnergy/Fuel (non-petroleum)Pollution/RemediationResearch/DevelopmentTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Sex Differences in Pig Blood Gene Expression

Sex Differences in Pig Blood Gene Expression

October 11, 2025
RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

October 10, 2025

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025

Cold-Tolerant Germination in Hulless Barley Uncovered!

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1206 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in Pig Blood Gene Expression

Rethinking the Necessity of Prescribing Cascades

Snacking Habits Linked to Sleep Issues in Children

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.