• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NREL details great potential for floating PV systems

Bioengineer by Bioengineer
January 8, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Technology already in widespread use overseas, especially in Japan

National Renewable Energy Laboratory (NREL) researchers estimate that installing floating solar photovoltaics on the more than 24,000 man-made U.S. reservoirs could generate about 10 percent of the nation’s annual electricity production. Their findings, published in the journal Environmental Science & Technology, reveal for the first time the potential for floating PV to produce electricity in the United States.

While the United States was the first to demonstrate floating PV panels–with the first installation occurring 10 years ago on pontoons on an irrigation pond in Napa Valley, California–the idea has not received widespread national acceptance. The U.S. focus has primarily been on installing large-scale, ground-mounted solar panels, and only had seven floating PV sites as of December 2017. Floating PV sites are being deployed more overseas, however, with more than 100 sites as of the end of last year. Japan, for example, is home to 56 of the 70 largest floating PV installations.

Photo shows solar panels floating on a body of water.

“In the United States, it’s been a niche application; where in other places, it’s really been a necessity,” said Jordan Macknick, the lead energy-water-land analyst for NREL and principal investigator of the project that produced the paper “Floating PV: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental U.S.” “We’re expecting it to take off in the United States, especially in areas that are land-constrained and where there’s a major conflict between solar encroaching on farmland.”

Macknick and his NREL co-authors, Robert Spencer, Alexandra Aznar, Adam Warren, and Matthew Reese, estimate about 2.1 million hectares of land could be saved if solar panels were installed on bodies of water instead of on the ground. The use of floating PV comes with additional benefits, including reduced water evaporation and algae growth. Spencer, lead author of the paper, added that in some cases benefits could be greater than those documented in the paper, but that the team used “strict assumptions that would give us a very conservative estimate of the total potential generation and benefits.” The NREL team also found that operating floating PV alongside hydroelectric facilities yields increased energy output and cost savings because of existing transmission infrastructure.

“Floating solar is a new industry enabled by the rapid drop in the price of solar PV modules,” said Warren, director of NREL’s Integrated Applications Center. “The cost of acquiring and developing land is becoming a larger part of the cost of a solar project. In some places, like islands, the price of land is quite high, and we are seeing a rapid adoption of floating solar.”

###

Funding for the analysis came from NREL’s Laboratory Directed Research and Development program, an internal source of research dollars.

NREL is the U.S. Department of Energy’s primary National Laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Media Contact
David Glickson
[email protected]
303-548-5167

Related Journal Article

https://www.nrel.gov/news/press/2018/nrel-details-great-potential-for-floating-pv-systems.html
http://dx.doi.org/10.1021/acs.est.8b04735

Tags: Atmospheric ScienceBiologyBusiness/EconomicsChemistry/Physics/Materials SciencesEarth ScienceElectrical Engineering/ElectronicsEnergy SourcesEnergy/Fuel (non-petroleum)Research/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.