• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NPS professor, students explore innovative ways to power the Navy

Bioengineer by Bioengineer
April 28, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: U.S. Navy photo by Andrew Gannon

Imagine a machine that collected water from the air, broke the water down into hydrogen and oxygen, then used hydrogen as a power source. That’s the goal of Dr. Anthony Gannon, associate professor at the Naval Postgraduate School’s Mechanical and Aerospace Engineering (MAE) school, and his rotating group of thesis students, who are applying their interdisciplinary education and research to support developing these new capabilities. Gannon has been working with students towards this goal since 2016.

The original idea was just the first part, collecting moisture from the atmosphere, but then MAE Chair Dr. Garth Hobson pushed Gannon to go further.

“When he saw what we’ve done there, he said, ‘You’ve got electricity and you’ve got water, so you might as well make hydrogen,'” Gannon says, recalling the conversation between him and Hobson.

Being able to get energy from moist air would reduce challenges in transporting fossil fuels to bases in deployment locations. Hydrogen is also lighter than other forms of fuel, which would be advantageous for running small devices off submarines, hypothetically fueling drones from the surrounding water instead of going up to be refueled. Finally, hydrogen power can be used as a method of storing excess energy produced by renewable sources.

Gannon proposed the idea to the Office of Naval Research (ONR), who now funds the research. Since then, he’s found a number of students interested in helping at each part of the energy generation. They are only using technology that is commercially available for practical reasons.

Automatically compressing hydrogen

Hydrogen is traditionally produced as a byproduct during natural gas reforming when natural gas is hit by high pressure steam. The hydrogen is then usually transported in bottles on trucks or via pipeline. With economical or environmental considerations in mind, U.S. Navy Lt. Joshua Lewis is looking to produce a small, compact and mobile system that captures hydrogen from the air.

“If I create a mobile system that runs on renewable sources, I can drop this thing anywhere in the world and start producing hydrogen gas,” Lewis explains.

He envisions using this method of hydrogen energy production to power drones, like a commercial medical drone that currently runs on batteries. It would decrease the turnaround time for these systems because the operator would no longer have to wait for the batteries to charge.

His system involves a dehumidifier to take moisture out of the surrounding air, an electrolyzer to separate the hydrogen from the water collected, and a compressor to compress the hydrogen. All these systems would be solar-powered. Navy Ensign Charles Heaton has been working closely with Lewis to power hydrogen generation on solar and to automate the whole process.

From fossil-power to hydrogen-power

Navy Lt. Emille Nicholas Perez is working to convert a small industrial engine to run on gas. Traditionally, these engine runs on a kerosene and synthetic oil mixture for both fuel and lubrication. Perez wants to create a baseline for the engine to run on gas, and then another student can pick up where Perez leaves off to shift the engine from running on gas to hydrogen.

Meanwhile, Ensign Ethan Hardt is picking up where a previous master’s student Ensign Brianna Kaufman left off, converting a natural gas and propane-powered turbine to run on hydrogen power instead. His predecessor developed the hydrogen supply system and was able to run the retrofitted system for a short period of time.

In addition to all these individual projects, the team is working to run a quadcopter on a hydrogen fuel cell. While current copter designs are not optimized for being run on hydrogen, Gannon says that running it on hydrogen could increase the run time from 20-30 minutes to up to 180 minutes.

Ultimately, Gannon and his students are working to optimize energy access in difficult operational environments – environments that his students know very well with their operational experience providing real-time recognition of exactly what an operator needs.

In addition to their research, Gannon says his students, Gannon says, have NPS students are known to be excellent translators of operational needs into solutions.

“They’re very keen and very bright, and some of the guys who have been on tour, they have practical insight,” Gannon says. “Once we bring them up-to-speed on the analysis side, they are powerful because they can bring the analytical tools and experience together.”

###

Media Contact
Lt. Cmdr. Micheal Larson
[email protected]

Original Source

https://www.nps.edu/web/guest/-/nps-professor-students-explore-innovative-ways-to-power-the-navy

Tags: Graduate/Postgraduate EducationResearch/DevelopmentTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Our Understanding of Bone Marrow Function

Revolutionizing Our Understanding of Bone Marrow Function

October 22, 2025
Revolutionary Ultra-Thin Filters Enhance Medicine and Dye Production

Revolutionary Ultra-Thin Filters Enhance Medicine and Dye Production

October 22, 2025

Ranking Dysarthria Severity in Parkinson’s with AI

October 22, 2025

Boosting Astaxanthin Production in Green Algae Desmodesmus sp.

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1274 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    305 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    144 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Our Understanding of Bone Marrow Function

Revolutionary Ultra-Thin Filters Enhance Medicine and Dye Production

Ranking Dysarthria Severity in Parkinson’s with AI

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.