• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel reaction microscope scheme targets biologically relevant molecules

Bioengineer by Bioengineer
November 14, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers in Germany and the US have upgraded the performance of a reaction microscope so that the technique — known as Cold Target Recoil Ion Momentum Spectroscopy, or COLTRIMS for short — can be extended to distinguish between isomers with two carbon centres. Having demonstrated the applicability of the approach on a synthetic prototype molecule a few years ago, the advance allows the team to begin exploring more complex structures such as those found in healthcare, and further develop our fundamental understanding of their behaviour.

Molecules that are identical in composition, but occur as mirror images of each other can be challenging to identify directly using a single measurement. Typically, the determination of this so-called chirality (meaning handedness) requires additional information such as data from theoretical models or the use of reference substances where the handedness is already known. Pinpointing these subtle differences in structure is important as the two different versions (or enantiomers) of the molecule can behave differently – for example, in some cases only one of the enantiomers offers therapeutic properties. In other cases, one of the enantiomers could be toxic, while the other is harmless.

In their latest work, published in the Journal of Physics B: Atomic, Molecular and Optical Physics, the scientists have shown that the technique can be used to determine directly the configuration of halothane (CHBrClCF3) – a general anaesthetic.

To perform the measurement, the researchers bombard a gaseous sample with X-rays and look at the time taken for charged chemical fragments to reach the detector, as well as the position of the impacts. For instantaneously fragmenting molecules, the data provides the basis of a molecular fingerprint that can be related to a specific chemical structure: the left- and right-handed versions show up as two distinct peaks in the measurement output.

The group has worked hard to maximize the collection efficiency of its setup, and with good reason. As samples become more complex, the probability that fragmentation will produce neutral portions (which the detector is blind to) increases.

In this approach, at least four ions need to be detected to distinguish between the enantiomers and decipher the absolute configuration. In the case of halothane, the researchers collected the fragments CH+, Cl+, Br+, and CF+3 , coming from the same molecule.

"This result is an encouraging step towards application of the method to biologically relevant molecules," commented team member Martin Pitzer, who is based at the University of Kassel, Germany.

Other institutions participating in the study include Johann Wolfgang Goethe-University Frankfurt, the University of Nevada and Philipps-Universität Marburg.

###

Paper

The published version of the paper "Stereochemical configuration and selective excitation of the chiral molecule halothane" (Martin Pitzer et al 2016 J. Phys. B: At. Mol. Opt. Phys. 49 234001) will be freely available online on 11 November. It will be available at http://iopscience.iop.org/article/10.1088/0953-4075/49/23/234001 DOI: 101088/0953-4075/49/23/234001

Media Contact

Simon Davies
[email protected]
44-011-793-01110
@IOPPublishing

Homepage

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Transposable Element Satellites Expand in Beetles’ Shrinking Genomes

Transposable Element Satellites Expand in Beetles’ Shrinking Genomes

August 24, 2025
Rapid, Non-Invasive Method to Detect Timber Adulteration

Rapid, Non-Invasive Method to Detect Timber Adulteration

August 24, 2025

New AMH Cutoffs for Chinese Women with PCOS

August 24, 2025

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transposable Element Satellites Expand in Beetles’ Shrinking Genomes

Rapid, Non-Invasive Method to Detect Timber Adulteration

New AMH Cutoffs for Chinese Women with PCOS

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.