• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel platform for investigating quiescence in dormancy-capable cancer cells

Bioengineer by Bioengineer
October 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Alptekin Aksan

A team of researchers from the University of Minnesota-Twin Cities has reported a novel encapsulation approach in identifying dormant cancer cells and maintaining them in a quiescent state. Their method involves immobilizing cells within a rigid silica-PEG matrix that prevents movement and proliferation, thus imposing a selective stress on cells. Immobilization within the silica-PEG matrix was performed via a cytocompatible, sol-gel encapsulation method, creating a highly porous matrix with pores large enough to allow sufficient nutrient and gas diffusion to meet metabolic requirements but small enough to prevent cell movement and proliferation. These findings appear in the September 2017 issue of the journal TECHNOLOGY.

According to Alptekin Aksan, Ph.D., Professor of Mechanical Engineering at the University of Minnesota and senior author on this study, the validation of this model advances the field of study of tumor dormancy as "We know that certain metastases are caused by dormant cells, which are currently impossible to target. If we can isolate and study them, then we can develop ways to destroy them."

Dormant cancer cells undergo quiescent periods during cancer development during which they are not proliferative but remain alive. Due to their latent nature, they are unresponsive to chemotherapy and responsible for some cases of relapse. The difficulty in isolating these rare cells from patients has limited understanding of dormancy and the development of therapies to prevent cancer relapse. Aksan and his team showed in this study that stressing cells by immobilizing them in a manner where they cannot proliferate or move leads to a differential response between the cancer cell lines examined. A fraction of breast cancer cells that normally become dormant in vivo survived in the matrix for up to 3 weeks. In contrast, other breast cancer cells that are considered more aggressive forms of the disease did not survive in the matrix for more than 24 hrs. Additionally, researchers showed that noncancerous cells did not survive for long in the gel either. When cells were extracted from the matrix after 48 hours and returned to favorable growth conditions, cells resumed proliferation. The preservation of their proliferation potential confirmed that the cellular arrest was reversible as is observed in vivo.

The research team is expected to follow up on this study by using this platform to investigate dormancy in a variety of cancers, particularly those for which the biology of tumor dormancy remains poorly understood. "This technology is a good starting point for our studies modeling the biologic and mechanical effects of the tumor microenvironment on behavior of cells that become dormant in cancer patients. Our ultimate goal is to apply this technology in the clinic in order to better predict which individual patient's tumors will be more likely to become dormant, and as a result be more difficult to detect in this patient population," said Aksan. "We are working with physicians as clinical collaborators that provide this clinical perspective to our work."

###

Readers interested in the research behind the novel encapsulation approach are invited to discover more by accessing the article in TECHNOLOGY.

Media Contact

Judy Yeo
[email protected]
@worldscientific

http://www.worldscientific.com

Original Source

http://www.worldscientific.com/page/pressroom/2017-10-03-01 http://dx.doi.org/10.1142/S2339547817500078

Share12Tweet7Share2ShareShareShare1

Related Posts

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.