• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel peroxide-based material emits fluorescence in response to stress

Bioengineer by Bioengineer
October 21, 2021
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polymers make-up everything from the clothes we wear to the plastic we eat off. In recent years, polymers that can release small molecules (like drugs) have been of major interest to pharmaceutical researchers. Previous studies have demonstrated that polymer systems can be modified to release fluorescent molecules when exposed to heat, light, or a change in pH. Now, researchers in the field have focused on “mechanophores,” materials that undergo a chemical transformation when placed under mechanical stress.

Robust Mechanofluorescent Polymer Networks with Organic Peroxides

Credit: Tokyo Tech

Polymers make-up everything from the clothes we wear to the plastic we eat off. In recent years, polymers that can release small molecules (like drugs) have been of major interest to pharmaceutical researchers. Previous studies have demonstrated that polymer systems can be modified to release fluorescent molecules when exposed to heat, light, or a change in pH. Now, researchers in the field have focused on “mechanophores,” materials that undergo a chemical transformation when placed under mechanical stress.

In a new paper published in Journal of the American Chemical Society, researchers from Japan have demonstrated the synthesis of a novel organic peroxide mechanophore, bis (9-methylphenyl-9-fluorenyl) peroxide (BMPF), which can be incorporated into a polymer network to release fluorescence. “While there has been little documented research on mechanophores based on organic peroxides so far, our results indicate that BMPF could have excellent potential for application in designing stress-responsive materials,” says Professor Hideyuki Otsuka of Tokyo Tech, who led the study.

Peroxides occur naturally in the human body as the result of the chemical reactions that take place within it, signifying their important role in new chemical processes. Inspired by this, the team synthesized a “peroxide linker” that could easily dissociate into smaller molecules under mechanical stress. They then ground the compound, BMPF, and observed that the solid not only changed color but also released 9-fluorenone, a fluorescent molecule. They then introduced BMPF into a polymer network and found that it retained its ability to release 9-fluorenone. Moreover, the fluorescence could be induced by either grinding or compression. Additionally, they tested the thermal stability of BMPF cross-linked polymers and found that they could withstand temperatures up to 110°C without decomposition.

The team is excited by these findings and their potential to expand the field of peroxide mechanochemistry. “By modifying the current system, we should be able to create other mechanofunctional polymers that can be tuned to release small molecules with special function when exposed to specific stimuli, toward wide-ranging applications in the fields of stress-sensing, imaging, and drug delivery,” comments Prof. Otsuka.

Some interesting consequences to look forward to!



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.1c08533

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Mechanochemical Reactions of Bis(9-methylphenyl-9-fluorenyl) Peroxides and Their Applications in Cross-Linked Polymers

Article Publication Date

5-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025
blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Jurema-Preta in Caatinga Silvopastoral Systems

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.