• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel ‘on-off’ switch discovered in plant defenses

Bioengineer by Bioengineer
July 22, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Protective mechanism paves the way to improved plant disease resistance and food stability

IMAGE

Credit: Huffaker Lab, UC San Diego

To ensure survival, living organisms are equipped with defensive systems that detect threats and respond with effective counter measures.

Plants are known to mount quick defenses against a variety of threats–from attacking insects to invading pathogens. These intricate immune response mechanisms operate through a complex network that plant biologists have sought to untangle.

Crucial to these defenses is the timing and duration of immune responses. Humans are equipped with a strong and rapid inflammation response that is essential to ward off disease, but chronic and persistent inflammation can be harmful to our health. Similarly, plants feature defenses that are timed for rapid and effective responses against pathogens, yet tightly controlled to avoid threatening the host organism.

Keini Dressano, Alisa Huffaker and their colleagues at the University of California San Diego’s Division of Biological Sciences have discovered a critical “on-off” switch in the plant immune response system. As described July 20 in their report published in Nature Plants, they identified a new regulatory switching mechanism–an RNA-binding protein–that helps turn on immune responses a few minutes after attack. Hours later, the switch follows with a deactivation “off” signal to avoid self-inflicted damage to the plant.

“These findings have provided new insights into how the complex intricacies of plant immune responses are orchestrated to successfully fight off pathogens, and lay a path forward for improving plant disease resistance to ensure future food stability,” said Huffaker, an assistant professor in the Section of Cell and Developmental Biology.

The novel switch was found in Arabidopsis plants to control splicing of mRNA transcripts that encode signaling protein regulators of the plant immune response. To turn immune defenses on, the researchers say, a simple chemical modification of the RNA-binding protein reverses mRNA splicing that normally keeps immune responses deactivated. To turn the immune response back off, a second chemical modification of the RNA-binding protein returns mRNA splicing to “normal,” and the immune response is back to being held in check.

“This work went beyond simply identifying a new regulator of plant immunity,” said Huffaker, of the detailed mechanisms uncovered. “We discovered specific chemical modifications that control regulatory function, transcriptional targets of the regulator, differential splicing of the targets and precise effects of splicing on both target function and overall plant immune responses and disease resistance.”

###

The study’s full list of authors includes: Keini Dressano (post-doctoral scholar), Philipp Weckwerth (former post-doctoral scholar), Elly Poretsky (graduate student), Yohei Takahashi (assistant project scientist), Carleen Villarreal (former undergraduate researcher), Zhouxin Shen (staff research associate), Julian Schroeder (distinguished professor), Steven Briggs (distinguished professor) and Alisa Huffaker (assistant professor).

The research was funded by a National Science Foundation (NSF) CAREER Award (1943591), a Hellman Foundation Fellowship, UC San Diego start-up funds, a Ciências sem Fronteiras/CNPq fellowship (200260/2015?4), the Cell and Molecular Genetics (CMG) Training Program at UC San Diego and an NSF award (1546899).

Media Contact
Mario Aguilera
[email protected]

Original Source

https://ucsdnews.ucsd.edu/pressrelease/novel-on-off-switch-discovered-in-plant-defenses

Related Journal Article

http://dx.doi.org/10.1038/s41477-020-0724-1

Tags: AgricultureBiologyCell BiologyDevelopmental/Reproductive BiologyEcology/EnvironmentFood/Food SciencePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.