• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel method to study quantum fluctuations in exotic phases of matter

Bioengineer by Bioengineer
May 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – We encounter phase transitions in our everyday lives when we witness water freezing or boiling. Similarly, quantum systems at a temperature of absolute zero also experience phase transitions. The pressure or magnetic field applied to such systems can be adjusted so that these systems arrive at a tipping point between two phases. At this point quantum fluctuations, rather than temperature fluctuations, drive these transitions.

Many fascinating phenomena with promising technological applications in areas such as superconductivity are linked to quantum phase transitions, but the role of quantum fluctuations in such transitions remains unclear. While there have been many advances in understanding the behavior of individual particles such as protons, neutrons, and photons, the challenge of understanding systems containing many particles that strongly interact with one another has yet to be solved.

Now, an international research team led by a group at Osaka University has discovered a clear link between quantum fluctuations and the effective charge of current-carrying particles. This discovery will help researchers uncover how quantum fluctuations govern systems in which many particles interact. One example of such a system is the interaction of electrons at extremely low temperatures. While low temperatures normally cause the resistance in a metal to drop, the resistance rises again at extremely low temperatures due to small magnetic impurities–this is referred to as the Kondo effect.

"We used a magnetic field to tune the Kondo state in a carbon nanotube, ensuring that the quantum fluctuations were the only variable in the system," study coauthor Kensuke Kobayashi says. "By directly monitoring the conductance and shot noise of the carbon nanotube, we were able to demonstrate a continuous crossover between Kondo states with different symmetries."

Using this novel approach, the researchers discovered a link between quantum fluctuations and the effective charge of current-carrying particles, e*. The discovery means that measurements of e* can be used to quantify quantum fluctuations.

"This is very exciting, as it paves the way for future investigations into the exact role of quantum fluctuations in quantum phase transitions," explains Professor Kobayashi. Understanding quantum phase transitions has the potential to enable many interesting applications in areas such as superconductivity, Mott insulators, and the fractional quantum Hall effect.

###

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Biochar Enhances Nutrient Signaling in African Spinach

Biochar Enhances Nutrient Signaling in African Spinach

November 11, 2025
Fat-Free Mass Linked to Preterm Infant Brain Development

Fat-Free Mass Linked to Preterm Infant Brain Development

November 11, 2025

Enhancing Agroecology: A Network Analysis Methodology

November 11, 2025

Blocking T Cells and TNF Protects Parkinson’s Mice

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biochar Enhances Nutrient Signaling in African Spinach

Fat-Free Mass Linked to Preterm Infant Brain Development

Enhancing Agroecology: A Network Analysis Methodology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.