• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel MD simulation sheds light on mystery of hydrated electron’s structure

Bioengineer by Bioengineer
March 22, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Vladimir Rybkin

The e-aq species is difficult to observe directly because it is short-lived and cannot be separated or concentrated. This rules out using direct structural approaches, diffraction or NMR spectroscopy to explore its structure. Though some properties including spectra in UV and IR-regions and the binding energy have been directly observed, the general lack of direct experimental measurements of the structure of the hydrated electron calls for theory.

Reliable modelling of the hydrated electron is at least as challenging as the experimental approach though and the limitations of the computational approaches applied so far have led to considerable theoretical uncertainty. Researchers have not, for example, been able to agree on whether or not the hydrated electron occupies a cavity. Though most theoretical studies suggest that it does, non-cavity models have also proven accurate. Another point of discussion is linked to the distinguishable surface and bulk structures of the hydrated electron.

In the paper, researchers Vladimir Rybkin and Jan Wilhelm at the University of Zurich and Joost VadeVondele at ETH Zurich and CSCS used the first molecular dynamics simulation of the bulk hydrated electron based on correlated wavefunction theory to provide conclusive evidence in favor of a persistent tetrahedral cavity made up of four water molecules. They also showed that there are no stable noncavity structures in the bulk hydrated electron.

The scientists arrived at their model through careful consideration of what features the most accurate approach must have. They wanted it to be based on molecular dynamics to capture the formation and dynamic transformations of the cavity. They needed a many-body correlated electronic structure level to avoid delocalization error and to allow for the correlation effects that have been found crucial in predicting the solvation of the electron accurately without empirical parameters. They wanted the simulation to be performed in the bulk under periodic boundary conditions to avoid formation of the surface structure and, finally, the method should provide an accurate description of liquid water.

The MD simulation they devised–the very first dynamic simulation of a complex chemical species in the condensed phase at the correlated wave function level of theory–fulfills all of these requirements. This was the first critical step. The second was actually managing to carry it out. Such calculations have been technically impossible until recent advances–including those made in their own groups–have allowed for massively parallel manybody theory calculations in the condensed phase on stateart supercomputers such as those as CSCS. It nonetheless took them about 1 million node hours on the Piz Daint supercomputer, Europe’s fastest.

The model showed that a cavity is formed within 250 femtoseconds after the excess electron is added to the unperturbed liquid water. Critically, the simulation failed to find any evidence of noncavity structures of the bulk hydrated electron in either stable or metastable states: this provides much stronger theoretical evidence for the cavity model.

###

The paper was funded in part by NCCR MARVEL.

Media Contact
Vladimir Rybkin
[email protected]

Original Source

http://nccr-marvel.ch/highlights/2019-03hydratedelectron

Related Journal Article

http://dx.doi.org/10.1002/anie.201814053

Tags: Algorithms/ModelsCalculations/Problem-SolvingChemistry/Physics/Materials SciencesMolecular Physics
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.